Spectral induced polarization signatures from a crude-oil contaminated site undergoing biodegradation, Bemidji, MN
Abstract
The spectral induced polarization (SIP) technique is a promising biogeophysical technique for sensing microbially-induced changes in the petrophysical properties of porous media. Recent studies by Schmutz et al. for samples freshly contaminated with oil show a well defined relaxation peak in the 0.001-0.1 Hz frequency rangewith the magnitude of the phase and resistivity increasing with increase in the relative saturation of the oil. In this study, we extend work of Abdel Aal et al. by acquiring SIP measurements in the frequency range between 0.001 and 1000 Hz on sediment cores retrieved from a hydrocarbon contaminated site where intrinsic bioremediation is occurring. Our results show the following: (1) in general for both the saturated and unsaturated zone samples, the real and imaginary conductivity for samples from within the plume are higher than those for background samples; (2) the imaginary conductivity results show a well defined peak in the frequency range between 0.001 - 0.01 Hz for contaminated samples with the magnitude higher for samples from the smear zone (contaminated with residual-phase hydrocarbon), exceeding values obtained for samples contaminated with dissolved-phase hydrocarbons; (3) a secondary peak not observed in uncontaminated samples is also observed around 100 Hz for the contaminated samples. Our results are consistent with the Abel Aal et al. study suggesting that biodegradation increases the magnitude of the imaginary conductivity response. The peak at the lower frequency may be due to the polarization of the Stern layer as suggested by Schmutz et al. Our laboratory SIP measurements from core samples are consistent with downhole time domain induced polarization measurements that also how that the contaminated borehole is more chargeable than the background borehole.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMNS31B1402M
- Keywords:
-
- 0416 BIOGEOSCIENCES / Biogeophysics