Investigation of a slowly deforming, glacially debuttressed rock slope in the Alaska Range using InSAR, LiDAR and two-dimensional numerical modeling
Abstract
Field investigation of a large, actively deforming rock slope at Fels Glacier in the east-central Alaska Range during summer 2010 confirmed the presence of more than 100 normal and antislope scarps and numerous other deformation features indicative of deep-seated gravitational slope deformation. Movement is occurring on foliation planes in micaceous schist in response to debuttressing of the slope by rapid downwasting and retreat of Fels Glacier during the twentieth and early twenty-first centuries. Deformation at this slope poses a hazard to strategic infrastructure, including the Alyeska Pipeline and Richardson Highway, both of which are less than 4 km away. We have analyzed RADARSAT-1 (RSAT-1) datasets from the summers of 2003-2008 and confirmed average line-of-sight displacement rates as large as 1 cm/month using the D-InSAR technique. Additionally, speckle-tracking analysis of 2002 RSAT-1 data confirms significant deformation of the slope in response to the 2002 Denali Earthquake (M 7.9), which ruptured the Denali fault less than 4 km from the site. We have recently acquired 45 single-look-complex and spotlight RADARSAT-2 (RSAT-2) scenes spanning the period from January to December 2010 to further characterize recent slope deformation using D-InSAR. We have also constructed preliminary 2-D numerical models of the deforming slope, constrained by field, LiDAR and InSAR datasets, to better characterize the nature of past, present and future deformation at the site.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMNH32A..04N
- Keywords:
-
- 1640 GLOBAL CHANGE / Remote sensing