Physical Exposure to Seismic Hazards of Health Facilities in Mexico City, Mexico
Abstract
Although health facilities are essential infrastructure during disasters and emergencies, they are also usually highly vulnerable installations in the case of the occurrence of large and major earthquakes. Hospitals are one of the most complex critical facilities in modern cities and they are used as first response in emergency situations. The operability of a hospital must be maintained after the occurrence of a local strong earthquake in order to satisfy the need for medical care of the affected population. If a health facility is seriously damaged, it cannot fulfill its function when most is needed. In this case, hospitals become a casualty of the disaster. To identify the level of physical exposure of hospitals to seismic hazards in Mexico City, we analyzed their geographic location with respect to the seismic response of the different type of soils of the city from past earthquakes, mainly from the events that occurred on September 1985 (Ms= 8.0) and April 1989 (Ms= 6.9). Seismic wave amplification in this city is the result of the interaction of the incoming seismic waves with the soft and water saturated clay soils, on which a large part of Mexico City is built. The clay soils are remnants of the lake that existed in the Valley of Mexico and which has been drained gradually to accommodate the growing urban sprawl. Hospital facilities were converted from a simple database of names and locations into a map layer of resources. This resource layer was combined with other map layers showing areas of seismic microzonation in Mexico City. This overlay was then used to identify those hospitals that may be threatened by the occurrence of a large or major seismic event. We analyzed the public and private hospitals considered as main health facilities. Our results indicate that more than 50% of the hospitals are highly exposed to seismic hazards. Besides, in most of these health facilities we identified the lack of preventive measures and preparedness to reduce their vulnerability. For proper interpretation, our results are also presented in a Geographical Information System (GIS) that provides elements to support government plans to mitigate the impact of future earthquakes.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMNH31B1355R
- Keywords:
-
- 0468 BIOGEOSCIENCES / Natural hazards