Ice cauldron formation during the initial phase of the Eyjafjallajökull eruption observed with an airborne SAR
Abstract
We present images obtained by the Icelandic Coast Guard with an airborne Synthetic Aperture Radar (SAR) during the first hours and days of the subglacial eruption in Eyjafjallajökull. Cloud cover obscured the summit from view in the first three days of the eruption. Under these circumstances the SAR, being weather independent and able to see through ash plumes, was a particularly valuable tool. It provided a record of temporal development of ice cauldrons formed in the 200 m thick ice cover in the caldera, the 50-100 m thick ice on the southern slopes and disruption due to flooding in the northward facing outlet glacier Gígjökull. The eruption started 14 April, 2010, at 1:30 AM. The eruption apparently remained subglacial for some hours but a small plume was observed by aircraft around 6 AM. The first SAR radar images were obtained at 8:55 and a record of images obtained until 10:42 reveal the early development of ice cauldrons providing unique detail in how the eruption breaks new holes in the ice surface, allowing accurate estimates of ice melting rates in an explosive eruption. Widening of the cauldron around the most active crater on the first day of the eruption was 20-25 m/hour, indicating that heat transfer from magma to the ice walls of the cauldron was of order 2 x 106 W m-2. This heat transfer rate reduced fast as the cauldrons reached a width of 300-400 m. The eruption site was repeatedly surveyed with the same SAR during the next days. The images demonstrate how the surface cauldrons evolved and how the center of the eruption activity moved during the second day of the eruption. During the first days of the eruption holes formed in the surface of the Gígjökull glacier outlet, where the roof of flood water channels collapsed. The SAR images allows further understanding on the flood water mechanism by revealing that many of these holes were formed by an intensive flash flood on the second day of the eruption, presumably by hydraulic fracturing when basal water pressures significantly exceeded the ice load.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMNH11B1138M
- Keywords:
-
- 8427 VOLCANOLOGY / Subaqueous volcanism;
- 8485 VOLCANOLOGY / Remote sensing of volcanoes