Strongly Composition-Dependent Partial Molar Compressibility of Water in Silicate Glasses
Abstract
Water and other volatiles have long been known to play a fundamental role in igneous processes, yet their influence on the physical properties of melts are still not well enough understood. Of particular interest is the density contrast between liquid and solid phases, which facilitates melt extraction and migration. Owing to its low molecular weight, dissolved water must decrease magma density, but the way it does so as a function of pressure remains largely to be determined. Studies on quenched melts (glasses) provide useful information because the glass has the same structure as the melt. We measured compressional and shear wave velocities of seven series of hydrous aluminosilicate glasses by Brillouin scattering at room temperature and pressure. The glasses were quenched from high temperature and 2 or 3 kbar pressure. The dry end-members range from highly polymerized albitic and granitic compositions, to depolymerized synthetic analogues of mantle-derived melts. For each set of glasses, the adiabatic shear and bulk moduli have been calculated from the measured sound velocities and densities. These moduli are linear functions of water content up to 5 wt % H2O, the highest concentration investigated, indicating that both are independent of water speciation in all series. For water-free glasses, the bulk modulus decreases from about 65 to 35 GPa with increasing degree of polymerization. Sympathetically, the partial molar bulk modulus of the water component decreases from 114 to 8 GPa, such that dissolved water amplifies the differences in rigidity between the anhydrous glasses. This strong variation indicates that the solubility mechanisms of water depend strongly on silicate composition. Depolymerized liquids are also much less compressible than their polymerized counterparts, suggesting that the partial molar compressibility of dissolved water approaches zero in depolymerized liquids. If this is correct, hydrous mantle melts formed beneath volcanic arcs would be more buoyant at depth than previously thought, facilitating their extraction and rapid ascent.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMMR21A1989W
- Keywords:
-
- 3619 MINERALOGY AND PETROLOGY / Magma genesis and partial melting;
- 3909 MINERAL PHYSICS / Elasticity and anelasticity;
- 3924 MINERAL PHYSICS / High-pressure behavior;
- 8439 VOLCANOLOGY / Physics and chemistry of magma bodies