Oman's low latitude "Snowball Earth" pole revisited: Late Cretaceous remagnetisation of Late Neoproterozoic carbonates in Northern Oman
Abstract
Glaciogenic diamictites and associated ‘cap’ carbonates within the Neoproterozoic Huqf Supergroup of Oman record a period of extreme, possibly global, glaciations between 750-635 Ma (the "Snowball Earth"). We have performed high-resolution paleomagnetic sampling of two sections through ~635 Ma cap carbonates in the Jebel Akhdar region of northern Oman. Stepwise thermal demagnetisation reveals a low temperature component carried by goethite, and a high temperature component carried by haematite, that are both aligned with the modern dipole field direction. Occasional reversed polarity directions antipodal to the present day field indicate pervasive weathering of these outcrops over timescales of at least 1 Ma. Between these two overprints an intermediate component with typical unblocking temperatures of 300-550 C, probably carried by magnetite, can also be isolated in most samples. A robust fold test clearly demonstrates that this component was acquired after Paleozoic folding of the carbonates, and was most likely acquired during exhumation associated with emplacement of the Semail ophiolite during the Late Cretaceous (95-68 Ma). In geographic co-ordinates, the intermediate component has an almost horizontal NNW or SSE direction, similar to directions previously reported from outcrops of the ophiolite close to the Jebel Akhdar region, and from thermally altered basement rocks in the the Saih Hatat window further to the east [Feinberg et al. 1999]. Hints of an older, Permian, remagnetisation of the carbonates, which is also observed in the Saih Hatat basement rocks, have also produced a false polarity stratigraphy in one of the sampled sections. Our results contrast with the previously reported low latitude pole from the Huqf Supergroup [Kilner et al., 2005], which was considered to be amongst the more reliable paleomagnetic data supporting glaciations extending to low latitudes during the late Neoproterozoic. However, this interpretation was made on the basis of lower resolution sampling of only shallowly dipping sequences, and it is clear that this low-latitude pole was calculated from the same magnetic component that we have definitively shown to be a later remagnetisation. The paleolatitude of Oman during the Late Neoproterozoic glaciations therefore remains unconstrained, although paleomagnetic analysis of volcanic and sedimentary units in the Huqf Supergroup that bracket the glacial formations may yet yield a primary remanence.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMGP33C0959R
- Keywords:
-
- 1525 GEOMAGNETISM AND PALEOMAGNETISM / Paleomagnetism applied to tectonics: regional;
- global;
- 1533 GEOMAGNETISM AND PALEOMAGNETISM / Remagnetization