Downscaling of snow depth and river discharge in Japan by the Pseudo-Global-Warming Method
Abstract
Although a heavy snowfall often brings disaster, snow cover is one of the major water resources in Japan. Even during the winter, the monthly mean of the surface air temperature often exceeds 0 deg. in large parts of the heavy snow areas along the Sea of Japan. Thus, snow cover may be seriously reduced in these areas as a result of global warming, which is caused by an increase in greenhouse gases. This study estimates the impact of global warming on the snow depth in Japan during early winter. Some dynamical downscaling experiments are conducted by the Pseudo-Global-Warming method for the future projection of snow cover. By the hindcast runs, precipitation, snow depth, and surface air temperature show good agreement with the AMeDAS station data observed in a High-Snow-Cover (HSC) year and a Low-Snow-Cover (LSC) yea. Pseudo-Global-Warming runs for these years indicate that the decreasing ratios of the snow water are more significant in the areas whose altitude is less than 1500 m. The increase of the air temperature is one of the major factors for the decrease in snow water, since the present mean air temperature in most of these areas is near 0 deg. even in winter. On the other hand, the change in the aerial-mean precipitation due to global warming is less than 15% in both years. To evaluate the impact of the reduction of snow cover to water resource, a hydrological simulation is also made for the Agano River basin, which locates in Niigata and Fukushima Prefectures. The Agano River drains into the Sea of Japan and is the second largest river in Japan with annual discharge of about 12.9 billion m3. A hind cast experiment is carried out for the two decades from 1980 to 1999. The average correlation coefficient of 0.79 for the monthly mean discharge in the winter season indicates that the interannual variation of the river discharge could be reproduced and that the method is useful for climate change study. Then the hydrological response to the future global warming in the 2070s is investigated. Assuming the reference present climate period of 1990s, the monthly mean discharge for the 2070s is projected to increase by approximately 43% in January and 55% in February, but to decrease by approximately 38% in April and 32% in May. The flood peak in the hydrograph will shift to approximately one month earlier, i.e., from April in the 1990s to March in the 2070s. Furthermore, the 10-year average of snowfall amount is projected to be approximately 49.5% lower in the 2070s than that in the 1990s. Acknowledgment: This work was supported by the Global Environment Research Fund (S-5-3) of the Ministry of the Environment, Japan. References 1. Ma, X., T. Yoshikane, M. Hara, Y. Wakazuki, H. G Takahashi, and F. Kimura, 2010: Hydrological response to future climate change in the Agano River basin, Japan, Hydrological Research Letters, 4, 25-29 2. Hara,M., T.Yoshikane, H.Kawase and F.Kimura 2008:Impact of the Estimation of Global Warming on Snow Depth in Japan by the Pseudo-Global-Warming Method. Hydrological Research Letters 2 61-64.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMGC51A0731K
- Keywords:
-
- 1863 HYDROLOGY / Snow and ice;
- 3305 ATMOSPHERIC PROCESSES / Climate change and variability;
- 3329 ATMOSPHERIC PROCESSES / Mesoscale meteorology;
- 3355 ATMOSPHERIC PROCESSES / Regional modeling