NOAA/APT Satellite Data for Online and Real Time Monitoring of Tungurahua Volcanic Eruption and Temperature Profile in Ecuador
Abstract
The Ecuadorian Space Agency (EXA) has built HERMES, an online and real time ground station (GS) available to participating schools/universities for free access to NOAA and other remote sensing satellites. The GS is being used by students and scientists in Austria, USA, Japan and Ecuador to access NOAA satellites and spacecrafts online using only a computer and an internet connection with immediate access to satellite imaging and science data for their educational and research projects. The accuracy of analysed data can be used in research areas like forecasting, monitoring and damage assessment caused by eruptions. The HERMES internet-to-orbit gateway transforms a laptop into a full space-qualified GS on-the-move. The purpose of this paper is to present results of Andean mountain area in Ecuador being affected by high temperatures over 30 degree Celsius located over 3000 m high. From May 15 - 20, 2010, we received images from NOAA-18 and NOAA-19 using HERMS GS and applied Surface Temperature (ST), a remote sensing tool to process these images in real-time. Moreover, measured results have been validated by the records from the local meteorological stations network. Additionally, the visual observations revealed that due to high temperature, those glaciers were in fact receding and exposing terrain, never seen before. This paper also highlights the possible causes of this rapid thermal change. The second event dealt by this paper happened on May 28th; we captured a large ash cloud emanating from Tungurahua volcano eruption in the Andean region along with a large ash cloud from the Pacaya volcano in Guatemala using far infrared images from NOAA-18 satellite with overlaid geo-reference coordinates. Both events were analysed with remote sensing tools and image enhancement schemes like 'thermal', 'hvct' and 'fire', available in weather decoding software using free APT data. The aftermath correlation results of volcanic eruption with high temperature profile in the same region are presented in this paper. We got the image of the fleeting ash cloud due to unique location of HERMES GS which remarks the importance of having this kind of stations around the world and the scientists have remote access via HERMES GS. NOAA has already granted free access to the world, now users must move forward to build new or network existing worldwide ground stations to get composite, 3D and animated information of the meteorological and atmospheric conditions to keep an eye on the abrupt changes for proper mitigation. As comes out from the current studies, real time monitoring of natural disasters is a key to receive first hand remote sensing data that can play a decisive role in evaluating damages and to prepare for current and future disaster management along with its educational perspective.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMED21C0689J
- Keywords:
-
- 0370 ATMOSPHERIC COMPOSITION AND STRUCTURE / Volcanic effects;
- 0845 EDUCATION / Instructional tools;
- 0850 EDUCATION / Geoscience education research;
- 8485 VOLCANOLOGY / Remote sensing of volcanoes