Carbonate melts in the Earth's mantle
Abstract
We perform a molecular dynamics study of the properties of the carbonated silicate melts at realistic thermodynamic conditions of the Earth’s mantle. We employ the Qbox package based on a highly efficient plane wave and pseudopotentials implementation of density-functional theory. We work on three distinct compositions: Mg2SiO4, 16Mg2SiO4+CO2 and 16Mg2SiO4+MgCO3 and study the effect of the carbonization on the melt properties as well as the difference in effects between the CO2 molecule and the CO32- anionic group. We focus on the Earth-relevant isotherm at 3000K. At ambient pressure the silicon is in tetrahedral coordination as SiO4 with no polymerization between the tetrahedra. The C atoms are the most mobile in the system followed by O. The diffusion of the CO2 molecule takes place through intermediate short-lived CO32- states. In agreement with previous studies on pure magnesium silicate melts the polymerization of the tetrahedra is enhanced by pressure; the onset of the five-fold coordination of the silicon atoms occurs after 40 GPa. The thermal dilatation of the CO2-bearing fluid is 17kbars/1000K at ambient pressure and 3000K. The density differences due to the addition of CO2 and of MgCO3 to the Mg2SiO4 melts are small at ambient pressures and 3000K. Most significantly, we find that independent linear CO2 molecules at low pressures change to CO3 groups that are part of the melt structure with increasing pressure.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFMDI51B1863G
- Keywords:
-
- 3618 MINERALOGY AND PETROLOGY / Magma chamber processes;
- 3924 MINERAL PHYSICS / High-pressure behavior;
- 8145 TECTONOPHYSICS / Physics of magma and magma bodies;
- 8147 TECTONOPHYSICS / Planetary interiors