Is there excess argon in the Fish Canyon magmatic system?
Abstract
Some phenocrysts from the Fish Canyon Tuff (San Juan volcanic field, south-western Colorado, USA) have yielded anomalously old 40Ar/39Ar apparent ages and yet the sanidine ages are sufficiently reproducible to allow its use as an international standard. The eruption age of the Fish Canyon tuff has recently been determined by high precision analysis and recalibration of the decay constants based on the sanidine standard at 28.305 ± 0.036 Ma [1], slightly younger than the generally accepted U-Pb age. Previously, minerals from the tuff have been used in various geochronological studies e.g., fission-track; U-Pb; Rb-Sr; K-Ar and 40Ar/39Ar, but U-Pb zircon ages which range 28.37 - 28.61 Ma appear to be older than the sanidine and other minerals, including biotite, yield older ages (27.41 - 28.25 Ma for biotite) [2]. In the Fish Canyon volcanic system, the erupted products are thought to exist in the magma chamber for significant periods prior to eruption [3] and then pass rapidly from a high temperature magmatic environment (where Ar is free to re-equilibrate among the minerals), to effectively being quenched upon eruption (where Ar becomes immobile). Artificially elevated ages, older than eruption age, have been identified in some 40Ar/39Ar geochronological studies (e.g. [4]). These older ages may either reflect; 1) argon accumulation in pheno- or xenocrysts (by radioactive decay of parent 40K), 2) excess argon (40ArE) incorporated into a mineral during crystallisation (via diffusion into the mineral lattice or hosted within fluid or melt inclusions) or 3) inherited radiogenic argon (the dated material contains a component older than the age of eruption) [5]. To better understand the effects of 40ArE on 40Ar/39Ar apparent ages we have conducted a detailed study of intra-grain grain age variations by UV-LAMP Ar-analysis. Analysis of polished thick sections has been performed in-situ using a 213nm laser and Nu Instruments Noblesse which is able to discriminate against interfering peaks at mass 36 allowing us to correct for the atmospheric 40Ar content. By using this method to analyse potassium-rich minerals (sanidine and biotite) and potassium-poor minerals (quartz and plagioclase), it has been possible to study the distribution of argon within these mineral phases and its incorporation into melt, fluid and solid inclusions. Here we report new 40Ar/39Ar intra-grain age data of minerals from the Fish Canyon Tuff, which despite being well characterised and extensively researched has not yet been a subject for this particular technique. [1] Renne P. R. et al., (2010) Geochim. Cosmochim. Acta, 74, 5349-5367. [2] Bachmann, O. et al., (2007) Chemical Geology, 236, 134-166.[3] Charlier, B.L.A. et al., (2007) Journal of Petrology, 48, 1875-1894. [4] Esser, R. P. et al., (1997) Geochim. Cosmochim. Acta, 61, 3789-3801. [5] Kelley, S. (2002) Chemical Geology, 188, 1-22. Corresponding Author: c.m.wilkinson@open.ac.uk
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.V53C2268W
- Keywords:
-
- 1036 GEOCHEMISTRY / Magma chamber processes;
- 1115 GEOCHRONOLOGY / Radioisotope geochronology;
- 8499 VOLCANOLOGY / General or miscellaneous;
- 9350 GEOGRAPHIC LOCATION / North America