Evolution of Early Paleoproterozoic Ocean Chemistry as Recorded by Black Shales
Abstract
In recent years, Precambrian biogeochemists have focused largely on the abundance, speciation and isotopic composition of major and trace elements preserved in organic carbon-rich black shales in order to track the co-evolution of ocean chemistry and life on Earth. Despite the fact that the period from 2.5 to 2.0 Ga hosted major events in Earth’s history, such as the Great Oxidation Event (GOE), an era of global glaciations, a massive and long-lived carbon isotope excursion and the end to banded iron formation (BIF) deposition, each with the potential to directly alter global biogeochemical cycles, it is perhaps best known for its unknowns. In order to help close this gap in our understanding of the evolution of Precambrian ocean chemistry we present a detailed biogeochemical study of Paleoproterozoic black shales deposited between 2.5 and 2.0 Ga. Our study integrates Fe speciation, trace metal chemistry and C, S and N isotope analyses to provide a thorough characterization of marine biogeochemical cycles as they responded to the GOE and set the stage for the demise of BIFs at ca. 1.8 Ga. Our data reveal an ocean that was both surprising similar to, and demonstrably different from, Archean and later Proterozoic oceans. Of particular interest, we find that ferruginous and euxinic conditions co-existed during this period and that sea water trace metal inventories fluctuated dramatically in conjunction with major carbon isotope excursions. By comparing our Paleoproterozoic contribution with recent biogeochemical studies of other Precambrian black shales we can begin to track first order changes in ocean chemistry without the major time gaps that have plagued previous attempts.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.U33A0013S
- Keywords:
-
- 0414 BIOGEOSCIENCES / Biogeochemical cycles;
- processes;
- and modeling