Petrophysical Properties of Sandstones Containing Deformation Bands Versus Those With Fractures: the Importance of Grain Contact Strength to Fault-Zone Structure
Abstract
In upper crustal fault zones, the majority of slip accumulates within a fault core, which is surrounded by a less deformed damage zone. Both the width and structural character of the damage zone affect its mechanical and hydrologic properties. Fault-related deformation can change rock mechanical properties, causing stress orientations to rotate in fault damage zones, and affecting seismicity over time. In addition, the types, densities, and orientations of structures in fault zones exert a first-order control on fault-zone permeability structure, permeability anisotropy, and flow pathways. For example, open-fracture damage zones enhance fault-parallel flow, whereas cataclastic deformation band networks slow flow in every direction except parallel to the line of intersection between bands. To improve our understanding of controls on damage zone character, we explored relationships between fault-zone structure and lithologic characteristics such as porosity and cement mineralogy in faulted quartz-rich sandstones. The sandstones chosen from fault sites in the Jurassic Navajo and Entrada sandstones in Utah, and the Cretaceous Mesaverde sandstone in Wyoming, exhibit a wide range in porosity. Samples collected include even greater variability in cements, from clay coatings on grains to patchy carbonate cement to grain-bridging quartz overgrowths and iron oxide cements. These variables demonstrably influence damage zone character, resulting in fractures in some locations and deformation bands in others (even within a single fault zone) and affecting deformation-band damage zone width. They likely influenced grain-contact strength also. Because ultrasonic velocity and related elastic moduli also vary with grain-contact strength, we measured P and S wave velocities as a function of confining pressure to 20 MPa as a sensitive proxy for grain-contact strength. More than 40 samples, including both host rock and rock with deformation bands, have been analyzed. Samples containing deformation bands display different ultrasonic velocities than adjacent samples lacking deformation bands. These data are used to evaluate the relative importance of the variables affecting deformation in clastic rocks. Establishing a quantitative link between fault structures, cements, porosity, and lithology and ultrasonic velocity will ultimately allow results to be directly applied to borehole geophysics and seismic reflection studies to improve prediction of fault-zone characteristics and fluid flow properties in quartz-rich sandstone reservoirs.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.T41B2127S
- Keywords:
-
- 1857 HYDROLOGY / Reservoirs;
- 5102 PHYSICAL PROPERTIES OF ROCKS / Acoustic properties;
- 5104 PHYSICAL PROPERTIES OF ROCKS / Fracture and flow;
- 8010 STRUCTURAL GEOLOGY / Fractures and faults