Continental Crust Growth as a Result of Continental Collision: Ocean Crust Melting and Melt Preservation
Abstract
The significance of the continental crust (CC) on which we live is self-evident. However, our knowledge remains limited on its origin, its way and rate of growth, and how it has acquired the “andesitic” composition from mantle derived magmas. Compared to rocks formed from mantle derived magmas in all tectonic settings, volcanic arc rocks associated with oceanic lithosphere subduction share some common features with the CC; both are relatively depleted in “fluid-insoluble” elements (e.g., Nb, Ta and Ti), but enriched in “fluid-soluble” elements (e.g., U, K and Pb). These chemical characteristics are referred to as the “arc-like signature”, and point to a genetic link between subduction-zone magmatism and CC formation, thus leading to the “island-arc” model widely accepted for the origin of the CC over the past 40 years. However, it has been recognized also that this “island-arc” model has several difficulties. These include (1) bulk arc crust (AC) is basaltic, whereas the bulk CC is andesitic [1]; (2) AC has a variably large Sr excess whereas the CC is Sr deficient [2]; and (3) AC production is mass-balanced by subduction-erosion and sediment recycling, thus contributing no new mass to CC growth, at least in the Phanerozoic [3,4]. Our data on magmatic rocks (both volcanic and intrusive) formed during the India-Asia continental collision (~65 - ~45Ma) [5] show a remarkable compositional similarity to the bulk CC with the typical “arc-like signature” [6]. Also, these syncollisional felsic rocks exhibit strong mantle isotopic signatures, implying that they were recently derived from a mantle source. The petrology and geochemistry of these syncollisional felsic rocks is most consistent with an origin via partial melting of upper oceanic crust (i.e., last fragments of underthrusting oceanic crust) under amphibolite facies conditions, adding net mantle-derived materials to form juvenile CC mass. This leads to the logical and testable hypothesis that continental collision produces and preserves the juvenile crust, and hence maintains net continental growth. References: [1] Gill, Orogenic andesites and plate tectonics, Springer-Verlag, New York., 390 pp, 1981; [2] Niu & O’Hara, Lithos, 112, 1-17, 2009; [3] von Huene & Scholl, Rev. Geophys., 29, 279-316, 1991; [4] Clift & Vannucchi, Rev. Geophys., 42, RG2001., 2004; [5] Mo et al., Chem. Geol., 250, 49-67, 2008; [6] Rudnick & Gao, Treat. Geochem., 3, 1-64, 2003.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.T32B..08N
- Keywords:
-
- 1020 GEOCHEMISTRY / Composition of the continental crust;
- 3040 MARINE GEOLOGY AND GEOPHYSICS / Plate tectonics;
- 3619 MINERALOGY AND PETROLOGY / Magma genesis and partial melting;
- 3640 MINERALOGY AND PETROLOGY / Igneous petrology