Late Neogene exhumation of the Piceance basin, N.W. Colorado, USA: Integrated analysis of multiple thermochronometers and subsidence modeling
Abstract
The retrograde history of sedimentary basins is often poorly constrained by the study of subsidence, compaction, and thermal diffusion models. As part of industry/academic collaborative research on the fundamental processes active in convergent tectonics we combined multiple paleothermometers, paleobarometers, and thermochronometers on deep borehole samples with modern heat flow measurements to provide powerful constraint for estimating the exhumation history in an area. The Piceance basin (N.W. Colorado) lies east of the leading edge of the Cretaceous to early Eocene Sevier thrust belt, and is flanked by several basement-involved structures (Douglas Creek arch, White River dome, Uinta uplift, White River uplift) that exhibit growth from the Maastrichtian through the late Eocene. The youngest preserved strata within the Piceance basin are within the early Oligocene Uinta Formation, although there are deposits as young as Miocene locally preserved in the region that may have also capped the basin. The timing of uplift, river incision, and plateau-scale exhumation within this region fits into the larger context of the evolution of the Colorado River drainage system. A series of core, cutting, and surface samples were compiled to develop a synthetic well (or vertical section) of over 5000 m. Samples were collected from stratigraphic intervals ranging from the Jurassic to the Eocene and analyzed for apatite and zircon U-Th/He ages, as well as apatite fission track length distributions and ages. As the exhumation model was the unconstrained parameter, the timing and magnitude of the cooling associated with such an event was systematically varied. Thermal histories of each sampled interval were extracted from differing exhumation scenarios in the Piceance basin model (which tracks the temperature and pressure evolution during burial and denudation) and forward modeled using HeFTy. The combined use of several thermochronometers (apatite and zircon U-Th/He, apatite fission tracks), as well as vitrinite reflectance and multi-phase fluid inclusion thermometry and barometry yields a best-fit thermal history that corresponds to ~ 1.5 km of exhumation in the last 4 million years (~0.38 mm/yr). The timing of the thermal lapse associated with the epierogenic uplift of the western United States is not well constrained, but did figure into these estimates of exhumation timing in the Piceance basin region. Estimates of modern rates of denudation derived from suspended sediment yields are considerably lower than our datasets suggest (~0.011 mm/yr), which suggest a transient period of Plio-Pleistocene unroofing. The onset of volcanism and hydrothermal mineralization within the Colorado mineral belt may constitute an additional factor to consider within the plateau exhumation history.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.T21E2205V
- Keywords:
-
- 1140 GEOCHRONOLOGY / Thermochronology