Surface wave propagation across the USArray
Abstract
We present Love and Rayleigh wave phase-velocity models at discrete periods between 25 and 100 s from the inversion of phase measurements. Phase measurements are made on an updated set of USArray TA data using a two-station method that has been corrected for the estimated wavefront arrival angle. Arrival angles are estimated using a “mini-array” method, which additionally calculates the local phase velocity for each event recorded in a mini array. By minimizing the misfit between observed and predicted phase within the mini array, we find the best-fit local phase velocity, which is then used to predict the phase in a grid search for apparent source locations. The trial sources have fixed epicentral distance but varied arrival angles with respect to the mini array, and the optimal apparent source corresponds to the arrival angle. Correcting the two-station method for the arrival angle produces small (around 1%) changes in phase velocity. In the inversion results, these changes are most significant along the Pacific coast at shorter periods, as a result of refraction at the ocean-continent transition. The local phase-velocity estimates are combined to make independent phase-velocity models for comparison with the inversion results. For Rayleigh waves at all periods, the two models have similar size, location, and strength of anomalies. Higher noise levels in Love wave data are apparent in both models; they show similar velocities and large anomalies, but smaller anomalies are below the noise levels at short periods. Still, the overall quality and quantity of data available allow us to investigate the errors associated with the two-station method, and the effect the duration and complexity of wave propagation has on these errors. We examine the consistency of wave propagation using the estimated arrival angles for multiple events recorded at the same stations. This is repeated with synthetic events, calculated using the spectral element method of Komatitsch and Tromp (2002), providing insight into the complexities of wave propagation and the capabilities of current measurement techniques.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.S44A..07F
- Keywords:
-
- 7255 SEISMOLOGY / Surface waves and free oscillations;
- 7270 SEISMOLOGY / Tomography