Precision Orbit Determination for the Lunar Reconnaissance Orbiter: orbit quality and gravity field estimation
Abstract
We present results of the Precision Orbit Determination work undertaken by the Lunar Orbiter Laser Altimeter (LOLA) Science Team for the Lunar Reconnaissance Orbiter (LRO) mission, in order to meet the position knowledge accuracy requirements (50-m total position) and to precisely geolocate the LRO datasets. In addition to the radiometric tracking data, one-way laser ranges (LR) between Earth stations and the spacecraft are made possible by a small telescope mounted on the spacecraft high-gain antenna. The photons received from Earth are transmitted to one LOLA detector by a fiber optics bundle. The LOLA timing system enables 5-s LR normal points with precision better than 10cm. Other types of geodetic constraints are derived from the altimetric data itself. The orbit geometry can be constrained at the times of laser groundtrack intersections (crossovers). Due to the Moon's slow rotation, orbit solutions and normal equations including altimeter crossovers are processed and created in one month batches. Recent high-resolution topographic maps near the lunar poles are used to produce a new kind of geodetic constraints. Purely geometric, those do not necessitate actual groundtrack intersections. We assess the contributions of those data types, and the quality of our orbits. Solutions which use altimetric crossover meet the horizontal 50-m requirement, and perform usually better (10-20m). We also obtain gravity field solutions based on LRO and historical data. The various LRO data are accumulated into normal equations, separately for each one month batch and for each measurement type, which enables the final weights to be adjusted during the least-squares inversion step. Expansion coefficients to degree and order 150 are estimated, and a Kaula rule is still needed to stabilize the farside field. The gravity field solutions are compared to previous solutions (GLGM-3, LP150Q, SGM100h) and the geopotential predicted from the latest LOLA spherical harmonic expansion.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.P51C1465M
- Keywords:
-
- 1221 GEODESY AND GRAVITY / Lunar and planetary geodesy and gravity;
- 5417 PLANETARY SCIENCES: SOLID SURFACE PLANETS / Gravitational fields;
- 5494 PLANETARY SCIENCES: SOLID SURFACE PLANETS / Instruments and techniques;
- 6250 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS / Moon