Chemical Disequilibria and Sources of Gibbs Free Energy Inside Enceladus
Abstract
Non-photosynthetic organisms use chemical disequilibria in the environment to gain metabolic energy from enzyme catalyzed oxidation-reduction (redox) reactions. The presence of carbon dioxide, ammonia, formaldehyde, methanol, methane and other hydrocarbons in the eruptive plume of Enceladus [1] implies diverse redox disequilibria in the interior. In the history of the moon, redox disequilibria could have been activated through melting of a volatile-rich ice and following water-rock-organic interactions. Previous and/or present aqueous processes are consistent with the detection of NaCl and Na2CO3/NaHCO3-bearing grains emitted from Enceladus [2]. A low K/Na ratio in the grains [2] and a low upper limit for N2 in the plume [3] indicate low temperature (possibly < 273 K) of aqueous processes. Although many of the energetically favorable redox reactions are sluggish at low temperature, they could be catalyzed by enzymes if organisms were (are) present. The redox conditions in aqueous systems and amounts of available Gibbs free energy should have been affected by the production, consumption and escape of hydrogen. Aqueous oxidation of minerals (Fe-Ni metal, Fe-Ni phosphides, etc.) accreted on Enceladus should have led to H2 production, which is consistent with H2 detection in the plume [1]. Numerical evaluations based on concentrations of plume gases [1] reveal sufficient energy sources available to support metabolically diverse life at a wide range of activities (a) of dissolved H2 (log aH2 from 0 to -10). Formaldehyde, carbon dioxide [c.f. 4], HCN (if it is present), methanol, acetylene and other hydrocarbons have the potential to react with H2 to form methane. Aqueous hydrogenations of acetylene, HCN and formaldehyde to produce methanol are energetically favorable as well. Both favorable hydrogenation and hydration of HCN lead to formation of ammonia. Condensed organic species could also participate in redox reactions. Methane and ammonia are the final products of these putative redox transformations. Sulfates may have not formed in cold and/or short-term aqueous environments with a limited H2 escape. In contrast to Earth, Mars and Europa, the moon may have no (or very limited [4]) potential for sulfate reduction. Despite nutrient (C, N, P and S) and metal (e.g. Fe, Ni) rich environments and multiple sources of Gibbs free energy during aqueous episode(s), putative life on Enceladus [4] would have adapted to survive in low water activity alkaline brines rich in ammonia, methanol and organic liquids at temperature >150-170 K. The comet-like abundances of major plume gases and apparent redox disequilibria in aquatic systems are consistent with a minimal influence of aqueous processes on endogenic chemical reactions and may indicate abiotic interior. Alternatively, plume gases may represent never melted primordial parcels of the icy shell, while the deeper interior could contain altered species transformed in abiotic and/or biological processes. Refs: [1] Waite J. et al. (2009) Nature 460, 487-490. [2] Postberg F. et al. (2009) Nature 459, 1098-1101. [3] Hansen C. et al. (2010) 38th COSPAR Sci. Assembly. [4] McKay C. et al. (2008) Astrobiology 8, 909-919.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.P33A1563Z
- Keywords:
-
- 0406 BIOGEOSCIENCES / Astrobiology and extraterrestrial materials;
- 5200 PLANETARY SCIENCES: ASTROBIOLOGY;
- 6008 PLANETARY SCIENCES: COMETS AND SMALL BODIES / Composition;
- 6280 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS / Saturnian satellites