Compositions of Oceans on Icy Solar System Bodies (Invited)
Abstract
Interior oceans may exist on at least several solar system bodies: Europa, Enceladus, Ganymede, Titan and Triton. Compositions of the oceans could reflect bulk chemistries on the bodies, degree and timing of differendentition, current temperature and pressure conditions, and chemical exchanges between icy shells, liquid layers, and suboceanic solids (rocks, sediments, ices and clathrates). Observational signs are sparse and modeling is the major approach to evaluate oceanic compositions. On Europa, a presence of S(VI) species and CO2 at endogenic surface features [1] suggests sulfates and C species (organic and/or inorganic) in the ocean. The detection of NaCl and Na2CO3/NaHCO3-bearing grains emitted from Enceladus [2] implies the dominance of Na, Cl and carbonate/bicarbonate ions in the past and/or present alkaline fluids in the interior. These observations are consistent with independent models for water-rock interaction [3]. Evaluated low contents of other elements (Mg, Fe, Ca, K, S, P, etc.) in initial oceanic waters [3] are accounted for by low solubilities of minerals deposited from water solutions (serpentine, saponite, magnetite, carbonates, sulfides and phosphates). Oceanic redox states are affected by the composition of accreted ices and rocks, hydrogen production through oxidation of solids (mainly Fe-Ni metal) by water and an efficiency of H2 escape. Formation of a sulfate-bearing ocean (as on Europa) through oxidation of sulfides could have been driven by radiolytically-formed oxidants (H2O2, O2), high-temperature (>500 K) hydrothermal activity and H2 escape. Formation of sulfate facilitates leaching of Mg from minerals leading to the Mg-SO4-Na-Cl ocean. Although some of these factors could have played roles on the Galilean satellites, formation of sulfate-bearing oceans beyond Jupiter is unlikely. Accretion of cometary-type ices on moons allows an existence of water-methanol-ammonia liquids at ~153 K, although ammonia could have been sequestered in ammonium salts and other species [4]. At higher temperatures, the fluids could also contain organic (e.g., ethylene glycol) and inorganic solutes (Na, Cl, Li and Br) that also decrease melting temperatures. On large moons, oceans are thought to be stable between ice I and high-pressure water ices. Among other factors, oceanic compositions would reflect interactions during differentiation as well as current equilibria between solutes and solids (salts and clathrates above and/or below the oceans). On large and small moons, water oceans could also contain organic compounds (carboxylic and amino acids, alcohols, etc.) accreted and/or formed from other species. The oceans may also contain organic-rich low-viscosity layers (upper and/or lower) presented by low-solubility compounds (e.g., hydrocarbons). Despite low solubility, hydrogen, methane and nitrogen may dominate among dissolved gases, though these gases could have escaped from small moons. Although oceanic salinities are unknown, relatively large oceans cannot be presented by cold near-eutectic solutions. Refs. [1] Carlson R. et al. (2009) in Europa, ed. by R. Pappalardo et al., Univ. of Ariz. Press, 283-328. [2] Postberg F. et al. (2009) Nature 459, 1098-1101. [3] Zolotov M. (2007) GRL, 34, L23203. [4] Kargel J. (1992) Icarus 100, 556-574.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.P24A..02Z
- Keywords:
-
- 1060 GEOCHEMISTRY / Planetary geochemistry;
- 6008 PLANETARY SCIENCES: COMETS AND SMALL BODIES / Composition;
- 6045 PLANETARY SCIENCES: COMETS AND SMALL BODIES / Physics and chemistry of materials