Between ice and gas: CO2 on the icy satellites of Jupiter and Saturn
Abstract
CO2 exists in the surfaces of the icy Galilean and Saturnian satellites [1-6], yet despite its discovery over a decade ago on Ganymede, and five years ago on the Saturnian satellites, its nature is still debated [7]. On the Galilean satellites Callisto and Ganymede, the CO2 that is detected is bound to, or trapped within, the non-ice materials that prevent it from sublimating or otherwise escaping from the surface. On Europa, it resides within both the ice and nonice materials [8,9]. While greater abundances of CO2 may exist in the interiors of these moons, or small amounts may be continually created through particle bombardment of the surface, the observed CO2 is only a trace material, with a few hundred molecules responsible for the deepest absorption features and an estimated molar abundance of 0.1% [2; 10-12]. Yet its presence may provide essential clues to processes that shape the surfaces of the moon [13] and potentially key to understanding the composition of potential oceans in the subsurfaces. We continue measurements of the infrared properties associated with CO2 adsorbed onto nonice materials under pressures and at temperatures relevant to these icy satellites using bidirectional reflectance spectroscopy from ~ 1.5 to 5.5 μm. Previous measurements, using transmission spectroscopy, demonstrated both a compositional and a temperature dependence on the spectral signature of adsorbed CO2 [14]. Bidirectional spectroscopy enables detection of lower concentrations of adsorbate on fine-grained materials such as clays due to their large surface area to volume ratios and thus large surface areas that may be covered by adsorbate [15]. The effectiveness of transmission spectroscopy was also limited by the strong absorption of light within the pressed sample and its impermeability, which limited the coverage by adsorbate to the pellet’s outer surface. All measurements demonstrate that CO2 adsorbs onto montmorillonite clays, possibly due to its quadrupole moment, with the position of its ν3 fundament absorption band dependent on the cation composition and on the dosing temperature. It may also be that the presence of charge-compensating ions, and the resulting negative charge of the remaining structure, enables CO2 to adsorb through an induced dipole attraction. In general, the IR absorption band of CO2 in montmorillonite tends to shift toward longer wavelengths as the density of the electric field of the principle cation decreases, with the exception that the IR absorption band of the Na-rich endmember occurs at a shorter wavelength than for the Li-rich endmember. References: [1] Carlson et al., (1996) Science; [2] McCord et al., (1998) J. Geophys. Res.; [3] Buratti et al., (2005) Astrophys. J.; [4]Clark et al., (2005) Nature; [5] Brown et al., (2006) , Icarus; [6] Filacchione et al., (2006) , Icarus; [7] Cruikshank et al., (2010), Icarus, 206, 561-572; [9] Smythe et al., (1998),DPS,30, #55.P07, 1448; [9] Hansen and McCord, (2008), GRL, 35; [10] Hibbitts et al., (2000) J. Geophys. Res.; [11] Hibbitts et al., (2002) , J. Geophys. Res.; [12] Hibbitts et al., (2003) J. Geophys. Res.; [13] Moore et al., (2000), Icarus, 140, 294-312; [14] Hibbitts and Szanyi, (2007), Icarus. 191, 371-380; [15] Dyar et al., (2010), Icarus, 208, 425-437.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.P11C1352H
- Keywords:
-
- 6008 PLANETARY SCIENCES: COMETS AND SMALL BODIES / Composition;
- 6218 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS / Jovian satellites;
- 6280 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS / Saturnian satellites