Air Permeability and Infiltration Differences Associated with Grass and Gravel Streambeds in an Urban Environment
Abstract
Storm water infiltration and recharge is a key component of sustainable water resource management in rapidly expanding urban areas of arid and semi-arid regions. Near surface streambed permeability affects the partitioning of stream flows to infiltration and subsequent groundwater recharge, or increasing runoff to be conveyed downstream. Therefore, in this study, we assessed how air permeability varied among distinct stream beds of ephemeral urban washes in the semi-arid southwest. A Soil Core Air Permeameter (SCAP) was used to quantify in situ air permeability at sixteen sites in the Tucson, Arizona metropolitan area. Significant air permeability differences between gravel and grass lined ephemeral stream beds were found, where the average air permeability at the gravel sites was 3.58 x10-2 ± 1.11 x 10-2 mm2 (mean ± std error) and the air permeability at the grass sites was 7.13 x 10-3 ± 2.02 x 10-3 mm2. A previously published linear correlation between air permeability and saturated hydraulic conductivity was used to predict saturated hydraulic conductivity at the ephemeral stream beds of this study. Preliminary results suggest that the predicted saturated hydraulic conductivity values are comparable to ring infiltration measurements taken in the field. Findings from this study indicate that the higher porosity and decreased vegetation at the gravel lined urban washes enhanced infiltration rates, which may lead to decreased storm water runoff. However, higher infiltration rates at gravel lined sites may result in less time for processing of potential pollutants with negative implications for water quality.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.H51D0921W
- Keywords:
-
- 1813 HYDROLOGY / Eco-hydrology;
- 1838 HYDROLOGY / Infiltration;
- 1860 HYDROLOGY / Streamflow