Influence of Biological Macromolecules and Aquatic Chemistries on the Inhibition of Nitrifying Bacteria by Silver Nanoparticles
Abstract
The use of silver nanoparticles (Ag-NP) as a broad spectrum biocide in a wide range of consumer goods has grown exponentially since 2006 (1), which may result in an increased release of Ag-NP into wastewater streams and ultimately the receiving bodies of water. Ammonia oxidizing bacteria (AOB) play a critical role in the global nitrogen cycle through the oxidation of ammonia (NH3) to nitrite (NO2-) and are widely considered to be the most sensitive microbial fauna in the environment being readily inhibited by contaminants, including Ag-NP (2). This research used physiological techniques in combination with physical/chemical assays to characterize the inhibition of Nitrosomonas europaea, the model AOB, by silver ions (Ag+), 3-5 nm Ag-NP, 20 nm Ag-NP and 80 nm Ag-NP under a variety of aqueous chemistries. In addition, the stability of Ag-NP suspensions was examined under a variety of aqueous chemistries including in the presences of divalent cations, chloride anions, natural organic matter (NOM), proteins (BSA) and lipopolysaccharides (alginate). Using the stable Ag-NP/test media suspensions, N. europaea was found to be extremely sensitive to Ag+, 3-5 nm Ag-NP, 20 nm Ag-NP and 80 nm Ag-NP with concentrations of 0.1, 0.12, 0.5 and 1.5 ppm, respectively, resulting in a 50% decrease in nitrification rates. The inhibition was correlated with the amount of Ag+ released into solution. It is suspected that the inhibition observed from Ag-NP exposure is caused by the liberated Ag+. The aquatic chemistry of the test media was found to have a profound influence on the stability of Ag-NP suspensions. The presence of Ag ligands (e.g. EDTA and Cl-) reduced toxicity of Ag-NP through the formation of Ag-ligand complexes with the liberated Ag+. The presence of divalent cations (e.g. Ca2+ or Mg2+) resulted in the rapid aggregation of Ag-NP leading to a decrease in Ag+ liberation and thus a decrease in N. europaea inhibition. The presence of 5 ppm NOM resulted in a highly stable Ag-NP solution even in the presence of divalent cations. This stable Ag-NP/NOM dispersion resulted in higher toxicity in the presence of divalent cations than Ag-NP alone. This work also examined the effect of the presence of biological macromolecules, including proteins and lipopolysaccharides, on Ag-NP stability and toxicity. Acknowledgements We would like to thank nanoComposix, Inc. for donating the Ag-NPs. This research was funded through an Oregon Nanoscience and Microtechnologies Institute/United State Air Force Research Labs grant # 235271B, Amend. No. 5. References (1) Wijnhoven, S.; Peijnenburg, W.; Herberts, C.; Hagens, W.; Werner, I.; Oomen, A.; Heugens, E.; Roszek, B.; Bisschops, J.; Gosens, I.; van de Meent, D.; Kekkers, S.; de Jong, W.; van Zijverden, M.; Sips, A.; Geertsma, R., Nano-silver - a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009 1:1-30. (2) Choi, O.; Cleuenger, T. E.; Deng, B. L.; Surampalli, R. Y.; Ross, L.; Hu, Z. Q., Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Research 2009 43(7):1879-1886.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.H42C..02R
- Keywords:
-
- 0465 BIOGEOSCIENCES / Microbiology: ecology;
- physiology and genomics;
- 0470 BIOGEOSCIENCES / Nutrients and nutrient cycling;
- 0498 BIOGEOSCIENCES / General or miscellaneous;
- 1813 HYDROLOGY / Eco-hydrology