Co-contamination of As and F in alluvial aquifer
Abstract
Co-contamination of As and F is frequently observed in alluvial aquifers of many countries including Argentina, Mexico, China, and Pakistan. However, processes causing this phenomenon are still poorly understood. In arid or semi-arid areas, the aquifers are generally under oxidizing condition and As and F show a good correlation. In contrast, groundwaters under reducing condition generally show a poorer correlation. In this study, we explored the geochemical mechanisms causing the co-contamination of As and F and their poorer correlation in the reducing environment by investigating alluvial groundwaters of the Mankyeong River floodplain, Korea. For this study, we collected 72 groundwater samples from 42 shallow wells placed into the alluvial aquifer. Desorption experiments using soils collected from the study area were also performed. Groundwater chemistry data showed that waters are under strong reducing condition and the reductive dissolution of Fe oxides was the main process increasing As concentration in groundwaters. The co-contamination was also observed in the study area and F did not show a good correlation with As. F showed concentrations increasing with pH. Desorption experiments also showed the dependences of As and F on pH. The experiments using soils treated with Na citrate-NaHCO3-dithonite solution indicated that iron oxides were the main phases hosting both As and F in soils. In our study area, pH of groundwaters increases due to a series of reduction reactions, and which increased F concentration by desorption from iron oxides. This result suggests that sharing the same adsorption hosts and the pH increased by reduction reactions are the main reason for the co-occurrence of As and F in alluvial groundwater under reducing environments. The lack of correlation between As and F was derived by the precipitation of As as sulfides in sulfate reducing condition. However, the correlation could be much better in the oxidizing condition because As released from iron oxides by pH increase cannot be removed as sulfides.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.H41H1198K
- Keywords:
-
- 0404 BIOGEOSCIENCES / Anoxic and hypoxic environments;
- 0461 BIOGEOSCIENCES / Metals;
- 0496 BIOGEOSCIENCES / Water quality