The Effects of Solute Breakthrough Curve Tail Truncation on Residence Time Estimates and Mass Recovery
Abstract
Solute transport and hydrologic retention strongly affect biogeochemical processes that are critical to stream ecosystems. Tracer injections are used to characterize solute transport and storage in stream reaches, but the range of processes accurately resolved using this approach is not clear. The solute residence time distribution (RTD) depends on both in-stream mixing and exchange with the hyporheic zone. For shorter residence times, in-stream breakthrough curves (BTCs) can be modeled well with the classical advection-dispersion equation, whereas longer RTDs produce highly skewed in-stream BTCs for which traditional solute models are inappropriate. Observed BTCs have most commonly been modeled with in-stream advection-dispersion plus an exponential RTD, but process-based models suggest that hyporheic retention extends to much longer times and a power-law RTD is more appropriate. We synthesized results from a variety of tracer-injection studies to investigate how experimental design and tracer sensitivity influence the interpretation of tailing behavior and RTDs. We found that BTC tails are often not well observed in stream tracer experiments. The two main reasons for this are: 1) experimental truncation, which occurs when sampling ends before all tracer mass reaches the sampling location, and 2) sensitivity truncation, when tracer concentrations in the tail are too low to be detected reliably above background levels. Continuous Time Random Walk (CTRW) theory was used to determine the effects of tail truncation on tracer mass recovery and tailing behavior. Tail truncation due to both experimental and sensitivity truncation decreased mass recovery and obscured assessment of BTC tailing. Failure to consider tail truncation leads to underestimation of the retention of solutes in the streambed and subsurface (i.e., transient storage). Based on these findings, we propose criteria for stream tracer experiments to minimize tail truncation and improve inverse modeling of solute transport.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.H41G1163D
- Keywords:
-
- 1860 HYDROLOGY / Streamflow