Examining the sensitivity of modelled evapotranspiration to vegetation structural characteristics within boreal peatlands, riparian ecosystems and upland mixedwood forest
Abstract
The Western Boreal Plain (WBP) of northern Alberta is comprised of a complex mosaic of small ponds, riparian buffer zones, and upland aspen dominated mixedwood forests surrounded by low-lying peatlands. The hydrology of the WBP is strongly influenced by climatic drivers and geology, whereby water budgets are often controlled by vertical fluxes. During most years, potential evapotranspiration (PET) exceeds precipitation (P), and changes in P as a result of climatic change will likely alter actual evapotranspiration (AET) and regional water balances. In recent years, the WBP has also undergone intense anthropogenic disturbance via oil and gas exploration and extraction, and silvicultural and forest harvesting activities. The extent to which changes in land cover types/characteristics affect estimates of PET and AET is currently unknown. This study examines the sensitivity of PET using a simple estimate of equilibrium ET (Priestley-Taylor) and AET (Penman-Monteith variant) to variability in canopy structural and ground surface characteristics at 12 sites throughout the 2008 growing season (June, July, August). Energy balance meteorological stations are deployed within four peatland ecosystems, four riparian buffer zones, two regenerating upland mixedwood forests and two mature upland mixedwood forests. Airborne Light Detection and Ranging (LiDAR) is used to derive metrics of canopy height, leaf area index (LAI), uplands and lowlands, elevation, zero plane displacement, roughness length governing momentum, roughness length governing heat and vapour, and understory vegetation characteristics. LiDAR land surface metrics and energy balance measurements are used to model evapotranspiration for classified land cover types throughout the larger basin. Sensitivity of potential and actual estimates to changes in land cover characteristics within each of the three land cover types (peatland, riparian and upland) is quantified.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.H31B0988P
- Keywords:
-
- 1818 HYDROLOGY / Evapotranspiration;
- 1839 HYDROLOGY / Hydrologic scaling;
- 1847 HYDROLOGY / Modeling;
- 1855 HYDROLOGY / Remote sensing