Global Drought Monitoring and Forecasting based on Satellite Data and Land Surface Modeling
Abstract
Monitoring drought globally is challenging because of the lack of dense in-situ hydrologic data in many regions. In particular, soil moisture measurements are absent in many regions and in real time. This is especially problematic for developing regions such as Africa where water information is arguably most needed, but virtually non-existent on the ground. With the emergence of remote sensing estimates of all components of the water cycle there is now the potential to monitor the full terrestrial water cycle from space to give global coverage and provide the basis for drought monitoring. These estimates include microwave-infrared merged precipitation retrievals, evapotranspiration based on satellite radiation, temperature and vegetation data, gravity recovery measurements of changes in water storage, microwave based retrievals of soil moisture and altimetry based estimates of lake levels and river flows. However, many challenges remain in using these data, especially due to biases in individual satellite retrieved components, their incomplete sampling in time and space, and their failure to provide budget closure in concert. A potential way forward is to use modeling to provide a framework to merge these disparate sources of information to give physically consistent and spatially and temporally continuous estimates of the water cycle and drought. Here we present results from our experimental global water cycle monitor and its African drought monitor counterpart (http://hydrology.princeton.edu/monitor). The system relies heavily on satellite data to drive the Variable Infiltration Capacity (VIC) land surface model to provide near real-time estimates of precipitation, evapotranspiraiton, soil moisture, snow pack and streamflow. Drought is defined in terms of anomalies of soil moisture and other hydrologic variables relative to a long-term (1950-2000) climatology. We present some examples of recent droughts and how they are identified by the system, including objective quantification and tracking of their spatial-temporal characteristics. Further we present strategies for merging various sources of information, including bias correction of satellite precipitation and assimilation of remotely sensed soil moisture, which can augment the monitoring in regions where satellite precipitation is most uncertain. Ongoing work is adding a drought forecast component based on a successful implementation over the U.S. and agricultural productivity estimates based on output from crop yield models. The forecast component uses seasonal global climate forecasts from the NCEP Climate Forecast System (CFS). These are merged with observed climatology in a Bayesian framework to produce ensemble atmospheric forcings that better capture the uncertainties. At the same time, the system bias corrects and downscales the monthly CFS data. We show some initial seasonal (up to 6-month lead) hydrologic forecast results for the African system. Agricultural monitoring is based on the precipitation, temperature and soil moisture from the system to force statistical and process based crop yield models. We demonstrate the feasibility of monitoring major crop types across the world and show a strategy for providing predictions of yields within our drought forecast mode.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.H23B1189S
- Keywords:
-
- 1807 HYDROLOGY / Climate impacts;
- 1817 HYDROLOGY / Extreme events;
- 1855 HYDROLOGY / Remote sensing