Applications of Ferrate(VI) to Wastewater Reclamation and Water Treatment
Abstract
The estimated amount of water resources is about 63 billion cubic meters in Korea. However, due to the lack of precipitation during the dry season, natural flows are not enough for the water supply. In addition, since the lack of water affects water quality, environmental problems are occurred in natural and social systems. In this study, we investigated the application feasibility of ferrate(VI) systems to water and wastewater treatment. And we'd like to suggest an alternative solution for conservation and efficient reuse of the limited water resources. In the research area of environmental applications, a primary interest has been focused to the power of ferrate(VI) systems in the decomposition of pollutants in wastewater and industrial effluents due to its potential use as a strong, relatively non-toxic, and oxidizing agent for diverse environmental contaminants. Also ferrate(VI) has additional advantages as a very efficient coagulant and a sorbent of pollutants. We have analysed and compared several ferrate(VI) manufacturing processes, especially focused on the electro chemical methods(Fig. 1). And we have investigated the applications of the manufactured ferrate(VI) in our own laboratory and the commercial ferrate(VI) to decomposition of persistent organic pollutants in water. Under optimal conditions, the removal efficiencies of 2-chlorophenol and benzothiophene were above 90%(Fig. 2). The ferrate system(VI) is promising and can be one of the most efficient alternatives among the advanced oxidation processes(AOPs) for degradation of persistent organic pollutants, and is an innovative technology for the wastewater reclamation, water reusing systems, and water treatment systems. Fig 1. Comparison of Electro-Chemical Ferrate(VI) manufacturing Processes
Fig 2. Degradation of 2-Chlorophenol and Bezothiophene by Ferrate. (Experimental Conditions : 2-CP = 3ppm, BT = 5ppm, NaClO4 = 0.05M)- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.H11I0933K
- Keywords:
-
- 1831 HYDROLOGY / Groundwater quality;
- 1871 HYDROLOGY / Surface water quality;
- 1880 HYDROLOGY / Water management