Distributed landsurface skin temperature sensing in Swiss Alps
Abstract
The ZyTemp TN9 is a mass-produced thermal infrared (TIR) sensor that is normally used to build handheld non-contact thermometers. The measurement principle of the TN9 is similar to that of very costly meteorological pyrgeometers. The costs of the TN9 are less than 10. The output of the TN9 consists of observed thermal radiation, the temperature of the measurement instrument, and the emissivity used. The output is provided through a Serial Peripheral Interface protocol. The TN9 was combined with an Arduino board that registered data onto a USB memory stick. A solar cell, lead acid battery, housing and stand completed the meausrement set up. Total costs per set was in the order of 200 Land surface atmosphere interactions in mountainous areas, such as the Swiss Alps, are spatially heterogeneous. Shading, multi-layer cloud formation, and up- and downdrafts make for a very dynamic exchange of mass and energy along and across slopes. In order to better understand these exchanges, the Swiss Slope Experiment at La Fouly (SELF) has built a distributed sensing network consisting of eight micro-met stations and two flux towers in the "La Fouly" watershed in the upper Alps. To obtain a better handle on surface temperature, fifteen TIR sensing stations were installed that made observations during the 2010 Summer. Methods and results will be presented. Overview La Fouly watershed (source: http://eflum.epfl.ch/research/images/fouly_2.jpg)
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.H11A0790V
- Keywords:
-
- 1814 HYDROLOGY / Energy budgets;
- 1843 HYDROLOGY / Land/atmosphere interactions;
- 1848 HYDROLOGY / Monitoring networks;
- 1895 HYDROLOGY / Instruments and techniques: monitoring