Periglacial Landscape Stabilization Following Rapid Permafrost Degradation by Thermo-erosion, Bylot Island, Nunavut, Canadian Arctic Archipelago
Abstract
The Byam Martin Mountains that run southeast-northwest across Bylot Island are covered by an ice cap which is flowing towards the lowlands into valleys. The bottom of these valleys is filled with sediments shaped into various periglacial landforms that developed during the Holocene such as ice-wedge polygons, pingos, and thermokarst lakes (Fortier and Allard, 2004). At the study site (N 73° 09’ - W 79° 53’), snow-melt run-off driven processes of thermo-erosion have recently drastically modified the periglacial landscape by creating extensive network of gullies in ice-wedge polygons. In the valley of glacier C-79, thirty five gullies, hundreds of meters to kilometers long, were identified and studied in the field. The formation of these gullies has changed the local hydrographic network by connecting the valley walls to a proglacial river flowing in the valley. The gully heads were characterized by active thermo-erosion processes operating underground and at the surface for a number of years (Fortier et al. 2007). Downstream, the gully walls were affected by various permafrost degradation processes such as active-layer detachment, retrogressive thaw slumping, drainage of the active layer of the polygons into the gully channel and differential thaw settlement of the surface (Godin and Fortier, 2010). It was observed that after a few years the downstream parts of the gully systems were stabilized and the gully walls partially colonized by vegetation. Drilling and coring operations into stabilized areas revealed the presence of ground ice a few decimeters below the surface with cryostructures indicative of permafrost aggradation. On stabilized gully walls, the sediments were aligned parallel to the slope and showed ice-rich reticulate to suspended cryostructures. Down to about one meter, the sediments were separated by centimeters-thick ice lenses which contained air bubbles aligned perpendicular to the slope. We propose that drainage of the soils on the slope and the subsequent colonization of stabilized slopes by vegetation changed the thermal properties of the soil which resulted in a thinning of the active layer and ground ice aggradation in the upper part of the permafrost. These negative feedback effects contributed to permafrost recovery and ground ice aggradation. The latent heat of this ice-rich zone will act as a buffer to global warming and contributes to the long-term stability of the gullies in the new periglacial landscape. Fortier, D., Allard, M. 2004. Late Holocene Syngenetic Ice-wedge Polygons Development, Bylot Island, Canadian Arctic Archipelago. Canadian Journal of Earth Sciences, 41: 997-1012. Fortier, D., Allard, M., Shur, Y. 2007. Observation of Rapid Drainage System Development by Thermal Erosion of Ice Wedges on Bylot Island, Canadian Arctic Archipelago. Permafrost and Periglacial Processes, 18: 229-243. Godin, E., Fortier, D. (in press) Geomorphology of thermo-erosion gullies - case study from Bylot Island, Nunavut, Canada. Proceedings 6th Canadian Permafrost Conference and 63rd Canadian Geotechnical Conference, Calgary, October 2010.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.C31A0497F
- Keywords:
-
- 0702 CRYOSPHERE / Permafrost;
- 0708 CRYOSPHERE / Thermokarst;
- 0710 CRYOSPHERE / Periglacial processes;
- 0768 CRYOSPHERE / Thermal regime