Temperate Ice Under Jakobshavn Isbrae and Other Greenland Glaciers
Abstract
Jakobshavn Isbrae, western Greenland's largest outlet glacier, drains 6.5% of the ice sheet's area and therefore may be poised to make rapid contributions to global sea level rise. Indeed, in the late 1990s the glacier doubled in speed as its floating ice tongue disintegrated. Driving stresses up to 300 kPa suggest that a considerable amount of ice deformation combines with basal sliding to produce Jakobshavn's fast speed. Boreholes and overturned icebergs have indicated the existence of a soft, temperate layer at the bottom of the ice, where shear deformation would be concentrated. The thickness and water content of the temperate ice layer determine how much of the motion it can provide. While we focus on Jakobshavn, we also apply our analysis to other Greenland outlet glaciers. This project uses an implicit finite-difference model to compute the temperate ice thickness and water content along multiple flowlines feeding Jakobshavn Isbrae and other Greenland glaciers, in an effort to identify the mechanisms for their rapid movement. In contrast to previous modeling studies, which chose ice velocities in order to match partial temperature profiles measured in boreholes, our model is constrained by satellite-observed surface velocities. The model calculates the temperature field and determines the sliding and internal deformation velocities, constrained by the velocity measurements, to make a self-consistent balance. Feedbacks between temperature, water content, and viscosity allow the temperate shear layer to evolve. Our model results for temperate ice thickness under Jakobshavn (150-300 meters) agree with previous estimates (100-700 meters) and recent observations (30 and 200-250 meters). This model is well suited for glaciers with deeply eroded bedrock troughs. Forthcoming observational campaigns such as NASA's IceBridge program will produce detailed basal topography data for other Greenland outlet glaciers. As these data come online, we will model the temperate ice thickness under Greenland glaciers where field studies of deep ice temperature have not been done.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.C23B0606P
- Keywords:
-
- 0766 CRYOSPHERE / Thermodynamics;
- 0776 CRYOSPHERE / Glaciology;
- 0798 CRYOSPHERE / Modeling