Basal ice flow regime influenced by glacial lake formation in Rhonegletscher, Switzerland
Abstract
After the retreat of glacier terminus over a bedrock bump, a glacial lake has formed in front of Rhonegletscher, Switzerland. It is suspected that ice flow regime is now significantly influenced by the lake water. To investigate the impact of lake formation on glacier dynamics, we carried out surface and borehole observations in the terminus region of Rhonegletscher. In 2008 and 2009 summer seasons, we drilled more than 20 boreholes to measure borehole deformation by repeated inclinometry. Ice surface speed was measured by surveying stakes installed nearby the boreholes. We used a borehole televiewer to measure basal sliding speed by tracking stones and markers at the bottom of the boreholes. We also measured basal sediment layer thickness by hammering a penetrometer at the bottom of the boreholes. Our measurements showed clear decrease in the ice deformation rate near the lake (Fig. 1). Ice deformation accounted for 60-80% in the upper part of our study site (e.g. boreholes 1 and 5), whereas it is less than 10% near the lake (e.g. boreholes 7, 10 and 11). This result suggests that the basal ice flow near the lake is enhanced by the lake water. According to the basal sliding speed measurement in borehole 2, sliding accounted for less than 10% of basal flow speed from 2 to 31 August 2009. Deformation of a subglacial sediment layer is thus important in this region. The penetrometer measurement confirmed that the study site is underlain by a subglacial sediment layer whose thickness was in a range of 0-70 m. Fig.1 Terminus of Rhonegletscher and proglacial lakes indicated by the shaded areas. The columns show ice surface and deformation speeds measured at each borehole site from 9 July to 5 September in 2009. Ice deformation speed was negligibly small at boreholes 7, 10, and 11. Surface contour spacing is 20 m.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.C21A0507N
- Keywords:
-
- 0720 CRYOSPHERE / Glaciers;
- 0774 CRYOSPHERE / Dynamics;
- 0776 CRYOSPHERE / Glaciology