Identifying organic nitrogen compounds in Rocky Mountain National Park aerosols
Abstract
Nitrogen deposition is an important issue in Rocky Mountain National Park (RMNP). While inorganic nitrogen contributions to the ecosystems in this area have been studied, the sources of organic nitrogen are still largely unknown. To better understand the potential sources of organic nitrogen, filter samples were collected and analyzed for organic nitrogen species. Samples were collected in RMNP using a Thermo Fisher Scientific TSP (total suspended particulate) high-volume sampler with a PM2.5 impactor plate from April - November of 2008. The samples presented the opportunity to compare two different methods for identification of individual organic nitrogen species. The first type of analysis was performed with a comprehensive two dimensional gas chromatography (GCxGC) system using a nitrogen chemiluminescence detector (NCD). The filter samples were spiked with propanil in dichloromethane to use as an internal standard and were then extracted in water followed by solid phase extraction. The GCxGC system was comprised of a volatility based separation (DB5 column) followed by a polarity based separation (RXI-17 column). A NCD was used to specifically detect nitrogen compounds and remove the complex background matrix. Individual standards were used to identify peaks by comparing retention times. This method has the added benefit of an equimolar response for nitrogen so only a single calibration is needed for all species. In the second analysis, a portion of the same filter samples were extracted in DI water and analyzed with liquid chromatography coupled with mass spectroscopy (LC/MS). The separation was performed using a C18 column and a water-methanol gradient elution. Electrospray ionization into a time of flight mass spectrometer was used for detection. High accuracy mass measurement allowed unambiguous assignments of elemental composition of resulting ions. Positive and negative polarities were used since amines tend to show up in positive mode and nitrates in negative. The differences in the number of species and what species are identified between these two methods are important for planning future analyses of organic nitrogen compounds. In addition, these data provide new insight into the potential source of organic nitrogen in RMNP. Using the GCxGC method, 39 organic nitrogen species were detected and 20 were identified. Identified species include several types of amines and phenols. The LC/MS method identified several types of cresols, amines, and nitrates.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.B51H0458B
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE / Aerosols and particles;
- 0394 ATMOSPHERIC COMPOSITION AND STRUCTURE / Instruments and techniques;
- 0469 BIOGEOSCIENCES / Nitrogen cycling