Cadmium sorption onto Natural Red Earth - An assessment using batch experiments and surface complexation modeling
Abstract
Natural red earth (NRE), an iron coated sand found in north western part of Sri Lanka was used to examine its retention behavior of cadmium, a heavy metal postulated as a factor of chronic kidney disease in Sri Lanka. Adsorption studies were examined in batch experiments as a function of pH, ionic strength and initial cadmium loading. Proton binding sites on NRE were characterized by potentiometric titration yielding a pHzpc around 6.6. The cadmium adsorption increased from 6% to 99% along with a pH increase from 4 to 8.5. In addition, the maximum adsorption was observed when pH is greater than 7.5. Ionic strength dependency of cadmium adsorption for 100 fold variation of NaNO3 evidences the dominance of an inner-sphere bonding mechanism for 10 fold variation of initial cadmium loadings (4.44 and 44.4 µmol/L). Adsorption edges were quantified with a 2pK generalized diffuse double layer model considering two site types, >FeOH and >AlOH, for Cd2+ binding. From modeling, we introduced a monodentate chemical bonding mechanism for cadmium binding on to NRE and this finding was further verified with FTIR spectroscopy. Intrinsic constants determined were log KFeOCd = 8.543 and log KAlOCd = 13.917. Isotherm data implies the heterogeneity of NRE surface and the sorption maximum of 9.418 x10-6 mol/g and 1.3x10-4 mol/g for Langmuir and Freundlich isotherm models. The study suggested the potential of NRE as a material in decontaminating environmental water polluted with cadmium.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.B51D0389M
- Keywords:
-
- 0461 BIOGEOSCIENCES / Metals;
- 0466 BIOGEOSCIENCES / Modeling