Greater absolute rates of N2O production and consumption with soil warming dwarf variations in denitrification enzyme temperature sensitivities across seasons
Abstract
Investigators appreciate the important role that nitrate (NO3-) and soil moisture availability can play in governing net N2O production from soils. However, a large knowledge gap remains surrounding the drivers of soil N2O consumption and the role of microbial adaptation to changing environmental conditions in governing both N2O production and consumption. Net N2O soil efflux can be correlated with temperature, but little is known about the influence of temperature on gross rates of N2O production vs. consumption. Further, we do not understand how microbial communities responsible for these processes adapt or acclimate to soil warming. To investigate whether temperature alters the denitrifier-mediated fate of NO3- lost via N2O or N2, and if any such effect changes across seasons, we incubated soil collected in three seasons at four temperatures with and without 15N-enriched nitrate for 26 hours. Incubations were conducted in an anaerobic environment flushed with helium to permit detection of N2O and N2, and those gases’ δ15N. Temperature positively influenced CO2 production resulting from anaerobic processes. Maximum values of net N2O production were positively influenced by incubation and seasonal temperature, and the maximum rate of net N2O production occurred relatively early at warmer incubation temperatures. We also observed greater N2O:N2 ratios early in the incubations at warmer incubation temperatures. Isotope data are consistent with these trends. For those soils receiving the 15N label, differences in δ15N2O between early and late in the incubations were increasingly negative, and differences in δ15N2 increasingly positive, as temperature increased. Q10 values for N2O production and consumption exhibited increasing similarities as seasons progressed, with June N2O production and consumption Q10 values being nearly identical. These data provide convincing evidence that: a) increasing temperatures can induce denitrifying communities to perform complete denitrification (i.e. consumption of gross N2O production into N2) to a greater degree, and permit release of a relatively smaller proportion of the nitrate they consumed as N2O; b) the suite of enzymes responsible for N2O production and the one enzyme responsible for its consumption exhibit differential temperature sensitivities in their production and expression during winter months, but the sensitivity of these processes converges during warmer seasons; c) in spite of the smaller proportion of NO3- released as N2O with warming, warming’s positive influence on the amount of NO3- transformed by denitrifying organisms resulted in far greater absolute quantities of N2O released with incubation and seasonal warming. Continuing work explores the influence that temperature may exert on the relative abundances of denitrifying populations and their gene expression, and links these microbial characteristics to denitrification processes with warming. These data signify the importance of understanding enzyme kinetics in concert with microbial adaptation and acclimation as a factor governing the net fluxes of N2O from soil vs. its transformation into N2 with warming.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.B51B0359T
- Keywords:
-
- 0465 BIOGEOSCIENCES / Microbiology: ecology;
- physiology and genomics;
- 0469 BIOGEOSCIENCES / Nitrogen cycling;
- 0490 BIOGEOSCIENCES / Trace gases