Mammalian Biogeography and the Latitudinal Climatic Gradient in Western North America During the Paleocene Evolutionary Radiation of Mammals (Invited)
Abstract
We use the middle Paleocene (ca. 63-58) mammalian fossil record of western North America to examine the latitudinal gradients in both species richness and body size of mammals during their evolutionary radiation following the Cretaceous-Paleogene mass extinction. Decreasing species richness with latitude is a biogeographic pattern common to most clades today, including mammals, and is linked to climatic gradients; an inverse relationship between body size and environmental temperature (Bergmann’s rule) is well-known both within and among species of living endothermic vertebrates, including diverse clades of mammals. Despite the frequency among mammals of these patterns today, their long-term histories in the fossil record is not well documented. We compiled mammalian taxonomic occurrence data from published literature, online museum collection databases, and the Paleobiology Database for roughly 160 Torrejonian (To, ca. 63-60 Ma) and Tiffanian (Ti, ca. 60-58 Ma) North American Land Mammal Age fossil localities in western North America from Texas to Alberta. These localities were binned into nine geographic regions based on paleolatitude, and the centroids of the regions span ca. 28° of latitude. For the faunas from these regions, we compiled body size data from the literature for 170 Paleocene (Torrejonian and Tiffanian) mammal species, using lower first molar area (m1 LxW) as a proxy for body mass. The phosphate oxygen isotope composition of teeth from species of a single clade of herbivorous mammals (Phenacodontidae) indicates that mid-Paleocene latitudinal climate gradients were broadly similar to modern gradients in the region, so we treat paleolatitude as a proxy for temperature. Slopes of separate least squares linear regressions of rarefied To and Ti species richness on paleolatitude are not significantly different from zero, and the regressions explain only a small fraction of the variances in richness. For all species, m1 area has a statistically significant negative relationship with paleolatitude. For both analyses, results are similar at the genus levels. In eight species that occur in four or more regions, none demonstrate a statistically significant increase in m1 area with latitude. Thus, despite climatic gradients in the mid-Paleocene that were similar to modern gradients, mammals in the region during the Paleocene appear to violate two essentially canonical biogeographic patterns seen in modern mammals and diverse other organisms, potentially ruling out climate as a long-term control on these patterns. The contrasts between the biogeography of modern and mid-Paleocene mammals in the region could result from distinct community ecology of faunas dominated by extinct “archaic” clades of mammals, ongoing ecological recovery after the Cretaceous-Paleogene extinction, and/or the modern biogeographic patterns being geologically recent or episodic phenomenon and not long-term characteristics of the geographic distribution of mammalian species richness or body size.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.B44B..03F
- Keywords:
-
- 0410 BIOGEOSCIENCES / Biodiversity;
- 0454 BIOGEOSCIENCES / Isotopic composition and chemistry;
- 0459 BIOGEOSCIENCES / Macro- and micropaleontology;
- 0473 BIOGEOSCIENCES / Paleoclimatology and paleoceanography