Evaluating potential impacts of species conversion on transpiration in the Piedmont of North Carolina
Abstract
Land management practices that include species conversion or vegetation manipulation can have consequences to surface water availability, groundwater recharge, streamflow generation, and water quality through altering the transpiration processes in forested watersheds. Our objective in this study is to compare stand water use or transpiration in a piedmont mixed hardwood stand (i.e., present stand) to five hypothetical single species stands (i.e., management scenarios), [Quercus spp. (oak), Acer Rubrum (red maple), Liquidambar styraciflua (sweetgum), Liriodendron tulipifera (tulip poplar), and Pinus Taeda (loblolly pine]. Since October 2007, six watersheds with a flume or v-notch weir installed at the watershed outlet have been monitored for baseline streamflow rates (mm d-1). In the summer of 2010, five trees from each of the above species were instrumented with sap flow sensors in the riparian upland of one watershed to develop linkages between stand stream runoff and transpiration. The sap flow or thermal heat dissipation method was used to calculate tree sap flux density for the mixed hardwood stand. Tree sapwood area and stand tree density were then used to compute stand transpiration rates, mm d-1, from June - August 2010. The parameters of the hypothetical single species stands were based on values determined from mixed hardwood stand conditions (e.g., the same stand sapwood area and stand tree density were applied to each option). The diameter at beast height of the monitored trees ranged from 10 cm to 38 cm with a water use range of 1.8 kg d-1 to 104 kg d-1. From our preliminary data, we found daily transpiration from the mixed hardwood stand (2.8 mm d-1 ± 0.06) was significantly (p < 0.05) lower than daily transpiration from the red maple (3.7 mm d-1 ± 0.14) and tulip poplar (3.5 mm d-1 ± 0.12) single species stand management option and significantly (p < 0.05) higher than the loblolly pine (2.3 mm d-1 ± 0.08), sweetgum (2.1 mm d-1 ± 0.08) and oak spp. (1.4 mm d-1 ± 0.04) option. Given that our data represent growing season conditions, these daily transpiration differences are likely a result of physical and physiological differences related to species canopy properties or root distribution and functions. Daily streamflow rates could be reduced by as much as 40% in the red maple scenario because of the increase in daily transpiration. This reduction in flow could have long-term implications and risk to water quality conditions and aquatic species habitat. We will continue to monitor transpiration rates in this mixed hardwood stand to quantify the seasonal variability in water use.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.B41A0300B
- Keywords:
-
- 1813 HYDROLOGY / Eco-hydrology;
- 1879 HYDROLOGY / Watershed