Improved parameterization of managed grassland in a global process-based vegetation model using Bayesian statistics
Abstract
More than a quarter of the Earth’s land surface is covered by grassland, which is also the major part (~ 70 %) of the agricultural area. Most of this area is used for livestock production in different degrees of intensity. The dynamic global vegetation model LPJmL (Sitch et al., Global Change Biology, 2003; Bondeau et al., Global Change Biology, 2007) is one of few process-based model that simulates biomass production on managed grasslands at the global scale. The implementation of managed grasslands and its evaluation has received little attention so far, as reference data on grassland productivity are scarce and the definition of grassland extent and usage are highly uncertain. However, grassland productivity is related to large areas, and strongly influences global estimates of carbon and water budgets and should thus be improved. Plants are implemented in LPJmL in an aggregated form as plant functional types assuming that processes concerning carbon and water fluxes are quite similar between species of the same type. Therefore, the parameterization of a functional type is possible with parameters in a physiologically meaningful range of values. The actual choice of the parameter values from the possible and reasonable phase space should satisfy the condition of the best fit of model results and measured data. In order to improve the parameterization of managed grass we follow a combined procedure using model output and measured data of carbon and water fluxes. By comparing carbon and water fluxes simultaneously, we expect well-balanced refinements and avoid over-tuning of the model in only one direction. The comparison of annual biomass from grassland to data from the Food and Agriculture Organization of the United Nations (FAO) per country provide an overview about the order of magnitude and the identification of deviations. The comparison of daily net primary productivity, soil respiration and water fluxes at specific sites (FluxNet Data) provides information on boundary conditions such as water and light availability or temperature sensibility. Based on the given limitation factors, a number of sensitive parameters are chosen, e.g. for the phenological development, biomass allocation, and different management regimes. These are introduced to a sensitivity analysis and Bayesian parameter evaluation using the R package FME (Soetart & Petzoldt, Journal of Statistical Software, 2010). Given the extremely different climatic conditions at the FluxNet grass sites, the premises for the global sensitivity analysis are very promising.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.B31B0297R
- Keywords:
-
- 0402 BIOGEOSCIENCES / Agricultural systems;
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 0429 BIOGEOSCIENCES / Climate dynamics;
- 0466 BIOGEOSCIENCES / Modeling