Root zone soil water dynamics and its effects on above ground biomass in cellulosic and grain based bioenergy crops of Midwest USA
Abstract
Root-zone soil moisture constitutes an important variable for hydrological and agronomic models. In agriculture, crop yields are directly related to soil moisture, levels that are most important in the root zone area of the soil. One of the most accurate in-situ methods that has established itself as a recognized standard around the world uses Time Domain Reflectometry (TDR) to determine volumetric water content of the soil. We used automated field-to-desk TDR based systems to monitor temporal (1-hr interval) soil moisture variability in 10 different bioenergy cropping systems at the Great Lakes Bioenergy Research Center’s (GLBRC) sustainability research site in south western Michigan, U.S.A. These crops range from high-diversity, low-input grass mixes to low-diversity, high-input crop monocultures. We equipped the 28 x 40 m vegetation plots with 30 cm long TDR probes at seven depths from 10 cm to 1.25 m below surface. The parent material at the site consists of coarse sandy glacial tills in which a soil with an approximately 50cm thick A-Bt horizon has developed. Additional equipment permanently installed for each system includes soil moisture access tubes, multi-depth temperature sensors, and multi-electrode resistivity arrays. The access tubes were monitored using a portable TDR system at bi-weekly intervals. 2D dipole-dipole electrical resistivity tomography (ERT) data are collected in 4-week intervals, while a subset of the electrodes is used for bi-hourly monitoring. The continuous scans (1 hr) provided us the real time changes in water content, replenishment and depletion, providing indications of water uptake by plant roots and potential seasonal water limitation of biomass accumulation. The results show significant seasonal variations between the crops and cropping systems. Significant relationships were observed between soil moisture stress, above-ground biomass and rooting characteristics. The overall goal of the study is to quantify the components of water balance, and identify water quality and water use implications of these cropping systems.Key Words
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.B23D0417B
- Keywords:
-
- 0414 BIOGEOSCIENCES / Biogeochemical cycles;
- processes;
- and modeling;
- 0452 BIOGEOSCIENCES / Instruments and techniques;
- 1866 HYDROLOGY / Soil moisture;
- 1878 HYDROLOGY / Water/energy interactions