Inter-annual variation in the foraging ecology of a brown bear population in southwest Alaska
Abstract
Brown bear (Ursus arctos) population size correlates with density of high-quality food resources. We report on a ten-year study (1993 - 2003) of brown bear nutritional ecology in southwestern Alaska during which changes in resource availability and density occurred. The diets of 21 female bears captured multiple years were characterized by stable isotope analysis (δ13C, δ15N, and δ34S) of guard hairs and putative diet items, followed by application of a Bayesian mixing model to derive assimilated diet estimates. Diet estimates were subsequently used to characterize individual-level resource specialization. Over the entire study period, salmon accounted for the highest proportion of bear diets (42.1%), followed by berries (24.5%), mammals (13.5%), freshwater fish (11.2%), and other plant matter (8.7%). The average salmon contribution to bear diets declined significantly from 48% to 34% following a precipitous reduction in salmon escapement mid-way through the study, after which the bear population shifted toward a more generalist diet. However, evaluation of individual animals recaptured multiple times during the study revealed variation in inter-annual dietary habits unrelated to the salmon crash. Individual variation presumably reflects local density changes in a variety of resources, with concomitant annual shifts in the degree of individual specialization. We also relate these patterns to other individual traits, such as reproductive status, home range, and habitat use to better constrain foraging habits. This study provides unique insights into the nutritional ecology of Alaskan brown bears and complements traditional wildlife studies by offering important covariates to better understand changes in population vital rates.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.B23B0391S
- Keywords:
-
- 0439 BIOGEOSCIENCES / Ecosystems;
- structure and dynamics;
- 0491 BIOGEOSCIENCES / Food webs and trophodynamics