Comparison of the cloud activation potential of open ocean and coastal aerosol in the Pacific Ocean
Abstract
Continuous measurements of aerosol concentration, particle size distribution, and cloud activation potential between 0.15 and 1.2% supersaturation were performed for open ocean and coastal air during the Halocarbon Air Sea Transect - Pacific (HalocAST) campaign. The nearly 7000 mile transect, aboard the R/V Thomas G. Thompson, started in Punta Arenas, Chile and ended in Seattle, Washington. Air mass source regions were identified on the basis of air mass back trajectories. For air masses in the southern hemisphere, aerosols sampled over the open ocean acted as cloud condensation nuclei at supersaturations between 0.5 and 1%, while coastal aerosols required higher supersaturations. In the pristine open ocean, observed aerosol concentrations were very low, typically below 200 cm-3, with an average particle diameter of approximately 0.4 μm. On the other hand, coastal aerosol concentrations were above 1000 cm-3 with an average particle diameter of 0.7 μm. Air masses originating in the northern hemisphere had much higher aerosol loads, between 500 and 2000 cm-3 over the ocean and above 4000 cm-3 at the coast. In both cases, the average particle diameters were approximately 0.5 μm. Measurements suggest that the northern hemisphere, substantially more polluted than the southern hemisphere, is characterized by alternating regions of high and medium aerosol number concentration. In addition, measurements of microorganism and organic matter concentration in the surface layer of the ocean water were conducted along the cruise track, to test the hypothesis that biogenic aerosol containing marine organic matter contribute to cloud activation potential. There was a significant correlation between mean aerosol diameter and prokaryote concentration in surface waters (r = 0.585, p < 0.01, n = 24), and between critical supersaturation and prokaryote concentration in surface waters (r = 0.538, p < 0.01, n = 24). This correlation indicates that larger aerosols occurred over water containing more bacteria and they were less effective cloud condensation nuclei.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.A43C0244V
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE / Aerosols and particles