Laboratory Evaluation of the Effect of HNO3 Uptake on Frost Point Hygrometer Measurement of Water Vapor under UT/LS Conditions
Abstract
Chilled mirror hygrometers (CMH) are widely used to measure water vapor in the troposphere and lower stratosphere from balloon-borne sondes. Systematic discrepancies among in situ water vapor instruments have been observed at low water vapor mixing ratios (< 5 ppm) in the upper troposphere and lower stratosphere (UT/LS). Understanding the source of the measurement discrepancies is important for a more accurate and reliable determination of water vapor abundance in this region. We have conducted a laboratory study to investigate the potential interference of gas-phase nitric acid (HNO3) with the measurement of frost point temperature, and consequently the water vapor mixing ratio, determined by CMH under conditions representative of operation in the UT/LS. No detectable interference in the measured frost point temperature was found for HNO3 mixing ratios of up to 2 ppb for exposure times up to 150 minutes. HNO3 was observed to co-condense on the mirror frost, with the adsorbed mass increasing linearly with time at constant exposure levels. Over the duration of a typical balloon sonde ascent (90-120 min), the maximum accumulated HNO3 amounts were comparable to monolayer coverage of the geometric mirror surface area, which likely corresponds to small fractional coverage of the actual frost layer surface area. This small amount of co-condensed HNO3 is consistent with the observed lack of HNO3 interference in the frost point measurement because the CMH utilizes significant reductions (>10%) in surface reflectivity by the condensate for the determination of H2O.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2010
- Bibcode:
- 2010AGUFM.A13B0207T
- Keywords:
-
- 0394 ATMOSPHERIC COMPOSITION AND STRUCTURE / Instruments and techniques