Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer
Abstract
A highly efficient photonic crystal dual band wavelength demultiplexer (DBWD) using silicon-on-insulator (SOI) substrates is proposed for demultiplexing two optical communication wavelengths, 1.31 μm and 1.55 μm. Demultiplexing of two wavelength channels is obtained by modifying the propagation properties of guided modes in two arms of Y type photonic crystal structure. Propagation characteristics of proposed DBWD are analyzed utilizing 3D finite difference time domain (FDTD) method. Enhancement in spectral response is further obtained by optimizing the Y junction of demultiplexer giving rise to high transmission and extinction ratio for the wavelengths, 1.31 μm and 1.55 μm. Hence it validates the efficiency of proposed optimized DBWD design for separating two optical communication wavelengths, 1.31 μm and 1.55 μm. Tolerance analysis was also performed to check the effect of variation of air hole radius, etch depth and refractive index on the transmission characteristics of the proposed design of SOI based photonic crystal DBWD.
- Publication:
-
Optics Communications
- Pub Date:
- October 2009
- DOI:
- 10.1016/j.optcom.2009.06.046
- Bibcode:
- 2009OptCo.282.3889R