Hybrid sediment gravity flow deposits - Classification, origin and significance
Abstract
The deposits of subaqueous sediment gravity flows can show evidence for abrupt and/or progressive changes in flow behaviour making them hard to ascribe to a single flow type (e.g. turbidity currents, debris flows). Those showing evidence for transformation from poorly cohesive and essentially turbulent flows to increasingly cohesive deposition with suppressed turbulence 'at a point' are particularly common. They are here grouped as hybrid sediment gravity flow deposits and are recognised as key components in the lateral and distal reaches of many deep-water fan and basin plain sheet systems. Hybrid event beds contain up to five internal divisions: argillaceous and commonly mud clast-bearing sandstones (linked debrite, H3) overlie either banded sandstones (transitional flow deposits, H2) and/or structureless sandstones (high-density turbidity currents, H1), recording longitudinal and/or lateral heterogeneity in flow structure and the development of turbulent, transitional and laminar flow behaviour in different parts of the same flow. Many hybrid event beds are capped by a relatively thin, well-structured and graded sand-mud couplet (trailing low-density turbulent cloud H4 and mud suspension fallout H5). Progressive bed aggradation results in the deposits of the different flow components stacked vertically in the final bed. Variable vertical bed character is related to the style of up-dip flow transformations, the distance over which the flows can evolve and partition into rheological distinct sections, the extent to which different flow components mutually interact, and the rate at which the flows decelerate, reflecting position (lateral versus distal) and gradient changes. Hybrid beds may inherit their structure from the original failure, with turbidity currents outpacing debris flows from which they formed via partial flow transformation. Alternatively, they may form where sand-bearing turbidity currents erode sufficient substrate to force transformation of a section of the current to form a linked debris flow. The incorporation of mud clasts, their segregation in near-bed layers and their disintegration to produce clays that can dampen turbulence are inferred to be key steps in the generation of many hybrid flow deposits. The occurrence of such beds may therefore identify the presence of non-equilibrium slopes up-dip that were steep enough to promote significant flow incision. Where hybrid event beds dominate the entire distal fan stratigraphy, this implies either the system was continually out of grade in order to freight the flows with mud clasts and clays, or the failure mechanism and transport path repeatedly allowed transmission of components of the initial slumps distally. Where hybrid beds are restricted to sections representing fan initiation, or occur more sporadically within the fan deposits, this could indicate shorter episodes of disequilibrium, due to an initial phase of slope re-adjustment, or intermittent tectonically or gravity-driven surface deformation or supply variations. Alternatively, changes between conventional and hybrid event beds may record changes in the flow generation mechanism through time. Thus the vertical distribution of hybrid event beds may be diagnostic of the wider evolution of the fan systems that host them.
- Publication:
-
Marine and Petroleum Geology
- Pub Date:
- 2009
- DOI:
- 10.1016/j.marpetgeo.2009.02.012
- Bibcode:
- 2009MarPG..26.1900H
- Keywords:
-
- Sediment gravity flow;
- Turbidite;
- Linked debrite;
- Transitional flow