The history of the Solar system's debris disc: observable properties of the Kuiper belt
Abstract
The Nice model of Gomes et al. suggests that the migration of the giant planets caused a planetesimal clearing event, which led to the late heavy bombardment (LHB) at 880 Myr. Here, we investigate the infrared emission from the Kuiper belt during the history of the Solar system as described by the Nice model. We describe a method for easily converting the results of N-body planetesimal simulations into observational properties (assuming blackbody grains and a single size distribution) and further modify this method to improve its realism (using realistic grain properties and a three-phase size distribution). We compare our results with observed debris discs and evaluate the plausibility of detecting an LHB-like process in extrasolar systems. Recent surveys have shown that 4 per cent of stars exhibit 24 μm excess and 16 per cent exhibit 70 μm excess. We show that the Solar system would have been amongst the brightest of these systems before the LHB at both 24 and 70 μm. We find a significant increase in 24 μm emission during the LHB, which rapidly drops off and becomes undetectable within 30 Myr, whereas the 70 μm emission remains detectable until 360 Myr after the LHB. Comparison with the statistics of debris disc evolution shows that such depletion events must be rare occurring around less than 12 per cent of Sun-like stars and with this level of incidence we would expect approximately one of the 413 Sun-like field stars so far detected to have a 24 μm excess to be currently going through an LHB. We also find that collisional processes are important in the Solar system before the LHB and that parameters for weak Kuiper belt objects are inconsistent with the Nice model interpretation of the LHB.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- October 2009
- DOI:
- arXiv:
- arXiv:0906.3755
- Bibcode:
- 2009MNRAS.399..385B
- Keywords:
-
- Kuiper Belt;
- Solar system: general;
- circumstellar matter;
- planetary systems;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 16 pages, 13 figures, accepted for publication in MNRAS