A Link between Quantum Logic and Categorical Quantum Mechanics
Abstract
Abramsky and Coecke (Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415-425, IEEE Comput. Soc., New York, 2004) have recently introduced an approach to finite dimensional quantum mechanics based on strongly compact closed categories with biproducts. In this note it is shown that the projections of any object A in such a category form an orthoalgebra Proj A. Sufficient conditions are given to ensure this orthoalgebra is an orthomodular poset. A notion of a preparation for such an object is given by Abramsky and Coecke, and it is shown that each preparation induces a finitely additive map from Proj A to the unit interval of the semiring of scalars for this category. The tensor product for the category is shown to induce an orthoalgebra bimorphism Proj A× Proj B→ Proj ( A ⊗ B) that shares some of the properties required of a tensor product of orthoalgebras. These results are established in a setting more general than that of strongly compact closed categories. Many are valid in dagger biproduct categories, others require also a symmetric monoidal tensor compatible with the dagger and biproducts. Examples are considered for several familiar strongly compact closed categories.
- Publication:
-
International Journal of Theoretical Physics
- Pub Date:
- March 2009
- DOI:
- Bibcode:
- 2009IJTP...48..769H
- Keywords:
-
- Orthomodular;
- Strongly compact closed category;
- Quantum logic;
- Biproducts;
- Tensor products