Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase
Abstract
Using a numerical model we explore the consequences of the intrinsic density change (Δρ/ρ ≈ 2-4%) caused by the Fe2+ spin transition in ferropericlase on the style and vigor of mantle convection. The effective Clapeyron slope of the transition from high to low spin is strongly positive in pressure-temperature space and broadens with high temperature. This introduces a net spin-state driving density difference for both upwellings and downwellings. In 2-D cylindrical geometry spin-buoyancy dominantly enhances the positive thermal buoyancy of plumes. Although the additional buoyancy does not fundamentally alter large-scale dynamics, the Nusselt number increases by 5-10%, and vertical velocities by 10-40% in the lower mantle. Advective heat transport is more effective and temperatures in the core-mantle boundary region are reduced by up to 12%. Our findings are relevant to the stability of lowermost mantle structures.
- Publication:
-
Geophysical Research Letters
- Pub Date:
- May 2009
- DOI:
- Bibcode:
- 2009GeoRL..3610306B
- Keywords:
-
- Geodesy and Gravity: Earth's interior: dynamics (1507;
- 7207;
- 7208;
- 8115;
- 8120);
- Tectonophysics: Dynamics: convection currents;
- and mantle plumes;
- Mineral Physics: Equations of state