Balancing the Cosmic Energy Budget: The Cosmic X-ray Background, Blazars, and the Compton Thick Active Galactic Nucleus Fraction
Abstract
At energies gsim2 keV, active galactic nuclei (AGNs) are the source of the cosmic X-ray background (CXB). For AGN population synthesis models to replicate the peak region of the CXB (~30 keV), a highly obscured and therefore nearly invisible class of AGN, known as Compton thick (CT) AGN, must be assumed to contribute nearly a third of the CXB. In order to constrain the CT fraction of AGNs and the CT number density we consider several hard X-ray AGN luminosity functions and the contribution of blazars to the CXB. Following the unified scheme, the radio AGN luminosity function is relativistically beamed to create a radio blazar luminosity function. An average blazar spectral energy density model is created to transform radio luminosity to X-ray luminosity. We find the blazar contribution to the CXB to be 12% in the 0.5-2 keV band, 7.4% in the 2-10 keV band, 8.9% in the 15-55 keV band, and 100% in the MeV region. When blazars are included in CXB synthesis models, CT AGNs are predicted to be roughly one-third of obscured AGNs, in contrast to the prediction of one half if blazars are not considered. Our model implies a BL Lac X-ray duty cycle of ~13%, consistent with the concept of intermittent jet activity in low power radio galaxies.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- December 2009
- DOI:
- 10.1088/0004-637X/707/1/778
- arXiv:
- arXiv:0910.4904
- Bibcode:
- 2009ApJ...707..778D
- Keywords:
-
- galaxies: active;
- galaxies: jets;
- quasars: general;
- X-rays: diffuse background;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- accepted ApJ