Gamma-ray Burst Afterglow Plateaus and Gravitational Waves: Multi-messenger Signature of a Millisecond Magnetar?
Abstract
The existence of a shallow decay phase in the early X-ray afterglows of gamma-ray bursts is a common feature. Here we investigate the possibility that this is connected to the formation of a highly magnetized millisecond pulsar, pumping energy into the fireball on timescales longer than the prompt emission. In this scenario, the nascent neutron star could undergo a secular bar-mode instability, leading to gravitational wave losses which would affect the neutron star spin-down. In this case, nearby gamma-ray bursts with isotropic energies of the order of 1050 ergs would produce a detectable gravitational wave signal emitted in association with an observed X-ray light-curve plateau, over relatively long timescales of minutes to about an hour. The peak amplitude of the gravitational wave signal would be delayed with respect to the gamma-ray burst trigger, offering gravitational wave interferometers such as the advanced LIGO and Virgo the challenging possibility of catching its signature on the fly.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- September 2009
- DOI:
- 10.1088/0004-637X/702/2/1171
- arXiv:
- arXiv:0907.2290
- Bibcode:
- 2009ApJ...702.1171C
- Keywords:
-
- gamma rays: bursts;
- gravitational waves;
- radiation mechanisms: non-thermal;
- Astrophysics - Cosmology and Extragalactic Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- 9 pages, 3 figures. Minor changes to match the published version