DetachedEddy Simulation
Abstract
Detachededdy simulation (DES) was first proposed in 1997 and first used in 1999, so its full history can be surveyed. A DES community has formed, with adepts and critics, as well as new branches. The initial motivation of high  Reynolds number, massively separated flows remains, for which DES is convincingly more capable presently than either unsteady Reynoldsaveraged NavierStokes (RANS) or largeeddy simulation (LES). This review discusses compelling examples, noting the visual and quantitative success of DES. Its principal weakness is its response to ambiguous grids, in which the wallparallel grid spacing is of the order of the boundarylayer thickness. In some situations, DES on a given grid is then less accurate than RANS on the same grid or DES on a coarser grid. Partial remedies have been found, yet dealing with thickening boundary layers and shallow separation bubbles is a central challenge. The nonmonotonic response of DES to grid refinement is disturbing to most observers, as is the absence of a theoretical order of accuracy. These issues also affect LES in any nontrivial flow. This review also covers the numerical needs of DES, gridding practices, coupling with different RANS models, derivative uses such as wall modeling in LES, and extensions such as zonal DES and delayed DES.
 Publication:

Annual Review of Fluid Mechanics
 Pub Date:
 January 2009
 DOI:
 10.1146/annurev.fluid.010908.165130
 Bibcode:
 2009AnRFM..41..181S