Development of a Two-Dimensional Hybrid-Kinetic Code for Simulations of Low-Altitude Auroral Flux-Tubes
Abstract
This paper presents initial results based on kinetic extensions of a nonlinear two-dimensional (2D) multi-fluid (three ion species and fluid electrons) MHD model that is designed to study propagation of shear Alfven waves in low-altitude auroral flux tubes. It is intended to use the model for scientific support of the “enhanced polar outflow probe” e-POP/CASSIOPE spacecraft mission (launch scheduled in 2010). Effects of gravity, thermal pressure, and geomagnetic field curvature are included, while the parallel electric field along geomagnetic field lines is calculated under the assumption of plasma quasineutrality. The model has been used successfully to study excitation of eigenmodes of the ionospheric Alfven resonator (IAR) by an Alfven wave packet injected from the magnetospheric end of the simulated plasma region. The formation of density cavities due to the ponderomotive force of standing oscillations in the IAR [Sydorenko, Rankin, and Kabin, 2008], and excitation of double layers and ion-acoustic wave packets, has been demonstrated. The kinetic extension of the multi-fluid code involves replacing the fluid electron model with a kinetic module that solves the simplified drift-kinetic Vlasov equation for the electron velocity distribution function (EVDF). To avoid undue complexity, it is assumed that (i) the electrons move only along geomagnetic field lines and (ii) the electron magnetic moment is conserved. As a result, the evolution of the EVDF is reduced to the problem of advection in 2D phase space “distance along the field line - velocity along the field line”. This problem is solved using a semi-Lagrangian algorithm [Staniforth and Cote, 1991]. The kinetic simulation starts from the initial equilibrium state similar to [Ergun et al., 2000]. The equilibrium assumes that the plasma consists of two electron populations: cold electrons with isotropic EVDF originating from the ionosphere, and hot anisotropic electrons with a loss-cone EVDF coming from the high-altitude end. The loss-cone distribution is prone to strong numerical dispersion, which is compensated by tracing the interface of the EVDF in the coordinate-velocity phase space. Ergun R. E., C. W. Carlson, J. P. McFadden, F. S. Mozer, and R. J. Strangeway (2000), Geophys. Res. Lett., 27, 4053-4056. Staniforth A. and J. Cote (1991), Mon. Wea. Rev., 119, 2206-2223 Sydorenko, D., R. Rankin, and K. Kabin (2008), J. Geophys. Res., 113, A10206, doi:10.1029/2008JA013579.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFMSM41B1723S
- Keywords:
-
- 2736 MAGNETOSPHERIC PHYSICS / Magnetosphere/ionosphere interactions;
- 2753 MAGNETOSPHERIC PHYSICS / Numerical modeling