Nanosatellite standardization and modularization as an asset to space weather measurements
Abstract
The continuity of measurements from satellites in the Magnetosphere and Ionosphere is essential for the space weather community as pointed out by the US National Space Weather Program. Challenges to space budgets and the growing dependence upon space weather prediction have opened the door for extremely small satellites to play a large role in making these measurements. Standardization allows for modularity and the ability to lower satellite cost by reusing instrumentation and satellite systems without redesigning interfaces. Use of nanosatellites gives a designer the freedom to depart from the customary larger satellite design by deploying standardized interfaces throughout the spacecraft bus. Examples from the Boston University Student Satellite for Application and Training (BUSAT), the Thunderstorms and Effects Scientific and Technology nanosatellite (TEST), and the Loss Cone Imaging Instrument (LCI) will be provided. BUSAT is a five instrument nanosatellite with a nine pixel Imaging Electron Spectrometer, a Magnetometer, an Auroral Imager, a Very Low Frequency receiver, and a Langmuir Plasma Probe. Its purpose is to further the understanding of the coupling between energetic particles originating in the magnetosphere and their subsequent effects on the Ionosphere. In addition to their space weather science objective, BUSAT’s subsystems are based on the Cubesat concept and have been standardized, enabling them to be stacked in any orientation. Subsystems are not limited in size to the basic 1U cube, but are able to be any multiple of that size in any direction.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFMSM33C1579V
- Keywords:
-
- 2494 IONOSPHERE / Instruments and techniques;
- 7900 SPACE WEATHER;
- 7914 SPACE WEATHER / Engineering for hazard mitigation